Validated Numerics
 Some chaotic bits and pieces

M. Joldes

October 19, 2023
Joined works with F. Bréhard, N. Brisebarre, W. Tucker

LAAS

 CNRS
Outline

Can/Should we trust the numerics?

- Floating-Point Arithmetic
- Validated Computing with Interval Arithmetic
- Rigorous Polynomial Approximations
- A posteriori error bounds with Newton-like methods
- Applications:
- Computer-aided proof for the existence of sinks in the Henon map
- Validated approximation of solutions of Newton-like operators

Validated Computing Strategies

Two strategies:

- Iterative refinement of enclosures
- All computations are validated

- Numerical solution easily available
- Existence + Explicit error bounds for a true solution \rightsquigarrow fixed-point arguments
- A Posteriori Newton-like Validation

Part 1: Computer-Assisted Proof for Finding Sinks of the Henon Map

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

- Map iterations: $h_{a, b}^{i+1}:=h_{a, b} \circ h_{a, b}^{i}, i \in \mathbb{N}^{*}$.
- For classical parameter values $a=1.4, b=0.3$ one observes the so-called Hénon attractor by iterating $h_{a, b}^{n}, n \rightarrow \infty$:

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

- Map iterations: $h_{a, b}^{i+1}:=h_{a, b} \circ h_{a, b}^{i}, i \in \mathbb{N}^{*}$.
- For classical parameter values $a=1.4, b=0.3$ one observes the so-called Hénon attractor by iterating $h_{a, b}^{n}, n \rightarrow \infty$:

Open question: Is this a Strange Attractor?

Some basic terminology

Orbit of x : $\Gamma(x)=\Gamma^{+}(x) \cup \Gamma^{-}(x)$

- Forward orbit:

$$
\Gamma^{+}(x):=\left\{h_{a, b}^{n}(x), n \in \mathbb{N}\right\}
$$

- Backward orbit:

$$
\Gamma^{-}(x):=\left\{y: \exists n \in \mathbb{N}: h_{a, b}^{n}(y)=x\right\}
$$

Some basic terminology

Orbit of $x: \Gamma(x)=\Gamma^{+}(x) \cup \Gamma^{-}(x)$

- Forward orbit:

$$
\Gamma^{+}(x):=\left\{h_{a, b}^{n}(x), n \in \mathbb{N}\right\}
$$

- Backward orbit:

$$
\Gamma^{-}(x):=\left\{y: \exists n \in \mathbb{N}: h_{a, b}^{n}(y)=x\right\}
$$

Periodic orbit $\Gamma_{n}(x)$ of period n if $\exists n \in \mathbb{N}^{*}$ s.t. $h_{a, b}^{n}(x)=x$.

Some basic terminology

Orbit of $x: \Gamma(x)=\Gamma^{+}(x) \cup \Gamma^{-}(x)$

- Forward orbit:

$$
\Gamma^{+}(x):=\left\{h_{a, b}^{n}(x), n \in \mathbb{N}\right\}
$$

- Backward orbit:

$$
\Gamma^{-}(x):=\left\{y: \exists n \in \mathbb{N}: h_{a, b}^{n}(y)=x\right\}
$$

Periodic orbit $\Gamma_{n}(x)$ of period n if $\exists n \in \mathbb{N}^{*}$ s.t. $h_{a, b}^{n}(x)=x$.

Stable orbit $\Gamma(x)$

Let $d(x, y)=\|x-y\|$ and $d(y, \Gamma(x))=\inf _{z \in \Gamma(x)} d(y, z)$.
$\Gamma(x)$ is stable if given $\varepsilon>0, \exists \delta>0$ s.t. $d\left(h_{a, b}^{n}(y), \Gamma(x)\right)<\varepsilon, \forall n \in \mathbb{N}^{*}$ and $\forall y$ s.t. $d(y, \Gamma(x))<\delta$.

Some basic terminology

Orbit of $x: \Gamma(x)=\Gamma^{+}(x) \cup \Gamma^{-}(x)$

- Forward orbit:

$$
\Gamma^{+}(x):=\left\{h_{a, b}^{n}(x), n \in \mathbb{N}\right\}
$$

- Backward orbit:

$$
\Gamma^{-}(x):=\left\{y: \exists n \in \mathbb{N}: h_{a, b}^{n}(y)=x\right\}
$$

Periodic orbit $\Gamma_{n}(x)$ of period n if $\exists n \in \mathbb{N}^{*}$ s.t. $h_{a, b}^{n}(x)=x$.

Stable orbit $\Gamma(x)$

Let $d(x, y)=\|x-y\|$ and $d(y, \Gamma(x))=\inf _{z \in \Gamma(x)} d(y, z)$.
$\Gamma(x)$ is stable if given $\varepsilon>0, \exists \delta>0$ s.t. $d\left(h_{a, b}^{n}(y), \Gamma(x)\right)<\varepsilon, \forall n \in \mathbb{N}^{*}$ and $\forall y$ s.t. $d(y, \Gamma(x))<\delta$.

Asymptotically Stable orbit $\Gamma(x)$ (sink)

$\Gamma(x)$ is asymptotically stable if it is stable and (by choosing δ smaller if necessary) $d\left(h_{a, b}^{n}(y), \Gamma(x)\right) \rightarrow 0$ as $n \rightarrow \infty$.

Some basic terminology II

Attractor

- describes asymptotic behaviour of typical orbits.

Some basic terminology II

Attractor

- describes asymptotic behaviour of typical orbits.
- Attracting Sets

Let T be a compact set such that $h(T)=T$.
T is called attracting if there exists an open neighborhood U of T such that $\bigcap_{i=0}^{\infty} h^{i}(U)=T$.

Some basic terminology II

Attractor

- describes asymptotic behaviour of typical orbits.
- Attracting Sets

Let T be a compact set such that $h(T)=T$.
T is called attracting if there exists an open neighborhood U of T such that
$\bigcap_{i=0}^{\infty} h^{i}(U)=T$.

- Attractor: An attracting set which contains a dense orbit.

Some basic terminology II

Attractor

- describes asymptotic behaviour of typical orbits.
- Attracting Sets

Let T be a compact set such that $h(T)=T$.
T is called attracting if there exists an open neighborhood U of T such that
$\bigcap_{i=0}^{\infty} h^{i}(U)=T$.

- Attractor: An attracting set which contains a dense orbit.
- Basin of attraction, $B(T)$: largest such U.

Some basic terminology II

Attractor

- describes asymptotic behaviour of typical orbits.
- Attracting Sets

Let T be a compact set such that $h(T)=T$.
T is called attracting if there exists an open neighborhood U of T such that
$\bigcap_{i=0}^{\infty} h^{i}(U)=T$.

- Attractor: An attracting set which contains a dense orbit.
- Basin of attraction, $B(T)$: largest such U.

Strange Attractor

For almost all pairs of points $x, y \in B(T)$ there exists $k \in \mathbb{N}^{*}$ s.t. $h^{k}(x)$ and $h^{k}(y)$ separate by at least a constant δ_{h}.

Hénon Attractor - Sensitivity to initial conditions

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Chaos: When the present determines the future, but the approximate present does not approximately determine the future.

Hénon Attractor - Fractal Dimension

Some basic terminology III - Strange Attractor

(a) Hénon Attractor

(b) Lorenz Attractor

(c) Ueda Attractor

- Name coined by Takens and Ruelle $\simeq 1971$

Ruelle (The Mathematical Intelligencer 2, 126, 1980): The name is beautiful, and well suited to these astonishing objects, of which we understand so little.

Open Question: Is Hénon Attractor a Strange Attractor?

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Open Question: Is Hénon Attractor a Strange Attractor?

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

- Chaotic map: aperiodic trajectories (generally believed)

Open Question: Is Hénon Attractor a Strange Attractor?

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

- Chaotic map: aperiodic trajectories (generally believed)
- There is a set of parameters (near $b=0$) with positive Lebesgue measure for which the Hénon map has a strange attractor. [Benedicks \& Carleson,'91].

Open Question: Is Hénon Attractor a Strange Attractor?

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

- Chaotic map: aperiodic trajectories (generally believed)
- There is a set of parameters (near $b=0$) with positive Lebesgue measure for which the Hénon map has a strange attractor. [Benedicks \& Carleson,'91].
- The parameters space is believed to be densely filled with regions, where the attractor is periodic.

Example of sink in Hénon attractor [Galias \& Tucker 2013]

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Let $a=1.399999486944, b=0.3$. Trajectory composed of 10000 points:

(a) $5 \cdot 10^{9}$ iterations skipped

(b) $6 \cdot 10^{9}$ iterations skipped.

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

(1) Find numerical approximation of sinks

- Typical values: 10^{6} parameters, 10^{3} initial values, orbit length $10^{6}, \ldots, 10^{9}$.

High parallelism \rightarrow Graphics Processing Units (GPUs)

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

(1) Find numerical approximation of sinks

- Typical values: 10^{6} parameters, 10^{3} initial values, orbit length $10^{6}, \ldots, 10^{9}$.
- chaotic \rightarrow multiple precision

High parallelism \rightarrow Graphics Processing Units (GPUs)

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

(1) Find numerical approximation of sinks

- Typical values: 10^{6} parameters, 10^{3} initial values, orbit length $10^{6}, \ldots, 10^{9}$.
- chaotic \rightarrow multiple precision

High parallelism \rightarrow Graphics Processing Units (GPUs)

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

(1) Find numerical approximation of sinks

- Typical values: 10^{6} parameters, 10^{3} initial values, orbit length $10^{6}, \ldots, 10^{9}$.
- chaotic \rightarrow multiple precision
(2) A posteriori validation of existence and stability with interval arithmetic

High parallelism \rightarrow Graphics Processing Units (GPUs)

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

(1) Find numerical approximation of sinks

- Typical values: 10^{6} parameters, 10^{3} initial values, orbit length $10^{6}, \ldots, 10^{9}$.

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

(1) Find numerical approximation of sinks

- Typical values: 10^{6} parameters, 10^{3} initial values, orbit length $10^{6}, \ldots, 10^{9}$.
- chaotic \rightarrow multiple precision

Hénon attractor

Hénon Map

$$
h_{a, b}\left(x_{1}, x_{2}\right)=\left(1+x_{2}-a x_{1}^{2}, b x_{1}\right)
$$

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

(1) Find numerical approximation of sinks

- Typical values: 10^{6} parameters, 10^{3} initial values, orbit length $10^{6}, \ldots, 10^{9}$.
- chaotic \rightarrow multiple precision
- Detected no. of bins estimate period length

Rigorous a posteriori proof of existence: interval Newton operator

Theorem

Let $F: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, F \in \mathcal{C}^{1}(D), \boldsymbol{x} \in \mathbb{I D}, \hat{x} \in \boldsymbol{x}$.

$$
N(\boldsymbol{x}):=\hat{x}-F^{\prime}(\boldsymbol{x})^{-1} F(\hat{x})
$$

If $N(\boldsymbol{x})$ is well-defined, then the following statements hold:
(1) if \boldsymbol{x} contains a zero x^{*} of F, then so does $N(\boldsymbol{x}) \cap \boldsymbol{x}$;
(2) if $N(\boldsymbol{x}) \cap \boldsymbol{x}=\emptyset$, then \boldsymbol{x} has no zeros of F;
(3) if $N(\boldsymbol{x}) \subseteq \boldsymbol{x}$, then \boldsymbol{x} contains a unique zero of F;

IID is the set of all intervals included in D .

Validation of periodic orbits using Newton operator [Galias 2001], [Galias \& Tucker, 2011, 2013]

$\left(x_{p-1}, b x_{p-2}\right) \quad\left(x_{1}, b x_{0}\right)$

- Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ defined by:

$$
[F(x)]_{k}=1-a x_{k}^{2}+b x_{(k-1) \bmod p}-x_{(k+1) \bmod p}, \quad k=0, \ldots, p-1
$$

- Then $F\left(x_{0}, \ldots, x_{p}\right)=0$ iif $z_{0}=\left(x_{0}, y_{0}\right)=\left(x_{0}, b x_{p-1}\right)$ is a fixed point of h^{p}

Validation of periodic orbits using Newton operator [Galias 2001], [Galias \& Tucker, 2011, 2013]

$\left(x_{p-1}, b x_{p-2}\right) \quad\left(x_{1}, b x_{0}\right)$

- Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ defined by:

$$
[F(x)]_{k}=1-a x_{k}^{2}+b x_{(k-1) \bmod p}-x_{(k+1) \bmod p}, \quad k=0, \ldots, p-1 .
$$

- Then $F\left(x_{0}, \ldots, x_{p}\right)=0$ iif $z_{0}=\left(x_{0}, y_{0}\right)=\left(x_{0}, b x_{p-1}\right)$ is a fixed point of h^{p}
- Choose $r>0$ s.t. $\boldsymbol{x}_{k}=\left[\hat{x}_{k}-r, \hat{x}_{k}+r\right]$.

Validation of periodic orbits using Newton operator [Galias 2001], [Galias \& Tucker, 2011, 2013]

$\left(x_{p-1}, b x_{p-2}\right) \quad\left(x_{1}, b x_{0}\right)$

- Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ defined by:

$$
[F(x)]_{k}=1-a x_{k}^{2}+b x_{(k-1) \bmod p}-x_{(k+1) \bmod p}, \quad k=0, \ldots, p-1
$$

- Then $F\left(x_{0}, \ldots, x_{p}\right)=0$ iif $z_{0}=\left(x_{0}, y_{0}\right)=\left(x_{0}, b x_{p-1}\right)$ is a fixed point of h^{p}
- Choose $r>0$ s.t. $\boldsymbol{x}_{k}=\left[\hat{x}_{k}-r, \hat{x}_{k}+r\right]$.
- Verify that $N(\boldsymbol{x}) \subseteq \boldsymbol{x}$, with:

$$
N(\boldsymbol{x}):=\hat{x}-F^{\prime}(\boldsymbol{x})^{-1} F(\hat{x})
$$

Validation of periodic orbits using Newton operator [Galias 2001], [Galias \& Tucker, 2011, 2013]

- Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ defined by:

$$
[F(x)]_{k}=1-a x_{k}^{2}+b x_{(k-1) \bmod p}-x_{(k+1) \bmod p}, \quad k=0, \ldots, p-1 .
$$

- Numerical approx of sink \hat{x} given.
- Choose $r>0$ s.t. $\boldsymbol{x}_{k}=\left[\hat{x}_{k}-r, \hat{x}_{k}+r\right]$.
- Verify that $N(\boldsymbol{x}) \subseteq \boldsymbol{x}$, with:

$$
N(\boldsymbol{x}):=\hat{x}-\underbrace{F^{\prime}(\boldsymbol{x})^{-1} F(\hat{x})}_{\boldsymbol{y}}
$$

$$
\left[\begin{array}{ccccc}
-2 a \boldsymbol{x}_{\mathbf{0}} & -1 & 0 & \cdots & b \\
b & -2 a \boldsymbol{x}_{\mathbf{1}} & -1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \\
0 & \cdots & b & -2 a \boldsymbol{x}_{\boldsymbol{p}-\mathbf{2}} & -1 \\
-1 & 0 & \cdots & b & -2 a \boldsymbol{x}_{\boldsymbol{p}-\mathbf{1}}
\end{array}\right] \cdot\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{p-2} \\
y_{p-1}
\end{array}\right]=\left[\begin{array}{c}
F(\hat{x})_{0} \\
F(\hat{x})_{1} \\
\vdots \\
F(\hat{x})_{p-2} \\
F(\hat{x})_{p-1}
\end{array}\right]
$$

Example of sink in Hénon attractor [Galias \& Tucker 2013]

Let $a=1.399999486944, b=0.3$.

Validation example: $\hat{x}=-1.22783854559,-0.73659038778, \ldots, 1.246771101387$ and $r=10^{-7}$.

Examples of found Hénon sinks [Galias \& Tucker, 2013]

a	p	w	b_{r}	λ_{1}
1.399922051	25	$5.522-12$	$2.473-12$	-0.00132
1.39997174948	30	$1.354-11$	$3.561-12$	-0.01887
1.3999769102	18	$3.207-09$	$1.014-09$	-0.05306
1.39998083519	24	$1.703-11$	$7.384-12$	-0.02819
1.399984477	20	$8.875-10$	$4.076-10$	-0.05099
1.39999492185	22	$3.686-11$	$1.531-11$	-0.09600
1.3999964733062	39	$2.784-13$	$1.115-13$	-0.03547
1.399999486944	33	$1.110-12$	$6.901-13$	-0.01843
1.40000929916	25	$1.118-11$	$5.128-12$	-0.08379
1.4000227433	21	$2.262-10$	$7.901-11$	-0.05612
1.40002931695	27	$5.782-11$	$2.646-11$	-0.01140
1.40006377472	27	$8.692-11$	$3.810-11$	-0.05636
1.40006667358	24	$6.278-11$	$2.646-11$	-0.01112
1.4000843045	27	$9.400-11$	$4.572-11$	-0.06870
1.40009110518	22	$3.493-11$	$1.531-11$	-0.02157
1.4000967515	26	$2.463-10$	$1.365-10$	-0.13233

Note: The orbit stability depends on the eigenvalues of $J_{p}\left(z_{0}\right)$ being inside the unit circle, with,

$$
J_{p}\left(z_{0}\right)=\left(h^{p}\right)^{\prime}\left(z_{0}\right)=h^{\prime}\left(h^{p-1}\left(z_{0}\right)\right) \cdots h^{\prime}\left(h\left(z_{0}\right)\right) \cdot h^{\prime}\left(z_{0}\right) .
$$

Part 2: Validated approximation of solutions of Newton-like operators

Part 2: Validated approximation of solutions of Newton-like operators

Compute Bounds with Contraction Mapping principle

Banach Fixed Point Theorem

(X, d) a complete metric space, $\mathbf{T}: X \rightarrow X, x^{\circ} \in X$, and compute μ, b, r s.t.

- $d\left(x^{\circ}, \mathbf{T} \cdot x^{\circ}\right) \leq b$
- \mathbf{T} is μ-Lipschitz over the closed ball $\bar{B}\left(x^{\circ}, r\right):=\left\{x \in X \mid d\left(x, x^{\circ}\right) \leq r\right\}$:

$$
d\left(\mathbf{T} \cdot x_{1}, \mathbf{T} \cdot x_{2}\right) \leq \mu d\left(x_{1}, x_{2}\right), \quad x_{1}, x_{2} \in \bar{B}\left(x^{\circ}, r\right)
$$

Also ensure that:

- $\mu<1 \quad$ - \mathbf{T} is contracting over $\bar{B}\left(x^{\circ}, r\right)$
- $b+\mu r \leq r-\bar{B}\left(x^{\circ}, r\right)$ is strongly stable

Then \mathbf{T} admits a unique fixed-point x^{*} in $\bar{B}\left(x^{\circ}, r\right)$.

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

- Compute a candidate approximation $x^{\circ} \in X$

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

- Compute a candidate approximation $x^{\circ} \in X$
- Newton-like operator $\mathbf{T}: X \rightarrow X, \quad x \mapsto x-\mathbf{A} \cdot \mathbf{F} \cdot x$:
with $\quad \mathbf{A} \approx\left(\mathrm{DF}_{x^{\circ}}\right)^{-1}$

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

- Compute a candidate approximation $x^{\circ} \in X$
- Newton-like operator $\mathbf{T}: X \rightarrow X, \quad x \mapsto x-\mathbf{A} \cdot \mathbf{F} \cdot x$:

$$
\text { with } \quad \mathbf{A} \approx\left(\mathrm{D} \mathbf{F}_{x^{\circ}}\right)^{-1}
$$

$$
b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|
$$

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

- Compute a candidate approximation $x^{\circ} \in X$
- Newton-like operator $\mathbf{T}: X \rightarrow X, \quad x \mapsto x-\mathbf{A} \cdot \mathbf{F} \cdot x$:

$$
\text { with } \quad \mathbf{A} \approx\left(\mathrm{D} \mathbf{F}_{x^{\circ}}\right)^{-1}
$$

$$
b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|
$$

- Compute a rigorous Lipschitz constant for \mathbf{T} over $\bar{B}\left(x^{\circ}, r\right)$:

$$
\mu \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathrm{D} \mathbf{F}_{x}\right\|
$$

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

- Compute a candidate approximation $x^{\circ} \in X$
- Newton-like operator $\mathbf{T}: X \rightarrow X, \quad x \mapsto x-\mathbf{A} \cdot \mathbf{F} \cdot x$:

$$
\text { with } \quad \mathbf{A} \approx\left(\mathrm{D} \mathbf{F}_{x^{\circ}}\right)^{-1}
$$

$$
b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|
$$

- Compute a rigorous Lipschitz constant for \mathbf{T} over $\bar{B}\left(x^{\circ}, r\right)$:

$$
\mu \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathrm{D} \mathbf{F}_{x}\right\|
$$

- μ does not depend on r if \mathbf{F} is affine $\Rightarrow \quad$ Choose $r:=b /(1-\mu)$

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

- Compute a candidate approximation $x^{\circ} \in X$
- Newton-like operator $\mathbf{T}: X \rightarrow X, \quad x \mapsto x-\mathbf{A} \cdot \mathbf{F} \cdot x$:

$$
\text { with } \quad \mathbf{A} \approx\left(\mathrm{D} \mathbf{F}_{x^{\circ}}\right)^{-1}
$$

$$
b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|
$$

- Compute a rigorous Lipschitz constant for \mathbf{T} over $\bar{B}\left(x^{\circ}, r\right)$:

$$
\mu \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathrm{D} \mathbf{F}_{x}\right\|
$$

- μ does not depend on r if \mathbf{F} is affine $\Rightarrow \quad$ Choose $r:=b /(1-\mu)$
- Otherwise, r and $\mu(r)$ must satisfy:

$$
b+\mu(r) r \leq r
$$

which usually expands to a polynomial equation over r

A Posteriori Newton-like Validation Methods

Target: $x^{*} \in X$ solution of $\mathbf{F} \cdot x=0$ where $\mathbf{F}: X \rightarrow Y$ is differentiable

- Compute a candidate approximation $x^{\circ} \in X$
- Newton-like operator $\mathbf{T}: X \rightarrow X, \quad x \mapsto x-\mathbf{A} \cdot \mathbf{F} \cdot x$:

$$
\text { with } \quad \mathbf{A} \approx\left(\mathrm{D} \mathbf{F}_{x^{\circ}}\right)^{-1}
$$

$$
b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|
$$

- Compute a rigorous Lipschitz constant for \mathbf{T} over $\bar{B}\left(x^{\circ}, r\right)$:

$$
\mu \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathrm{D} \mathbf{F}_{x}\right\|
$$

- μ does not depend on r if \mathbf{F} is affine
$\Rightarrow \quad$ Choose $r:=b /(1-\mu)$
- Otherwise, r and $\mu(r)$ must satisfy:

$$
b+\mu(r) r \leq r
$$

which usually expands to a polynomial equation over r
 $\Rightarrow \mathbf{F}$ has a unique root x^{*} in $\bar{B}\left(x^{\circ}, r\right)$.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

o Compute an approx $x^{\circ} \in X$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$
- Build Newton-like operator
$\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x, \quad \mathbf{A} \approx\left(\mathrm{D} \mathbf{F}_{x^{\circ}}\right)^{-1}$
- Bound $b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$
- Build Newton-like operator
$\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x, \quad \mathbf{A} \approx\left(\mathrm{DF}_{x^{\circ}}\right)^{-1}$
- Bound $b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|$
- Bound Lipschitz ratio over $\bar{B}\left(x^{\circ}, r\right)$:
$\mu(r) \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathbf{D} \mathbf{F}_{x}\right\|$
- Choose r such that $\quad b+\mu(r) r \leq r$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$
- Build Newton-like operator
$\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x, \quad \mathbf{A} \approx\left(\mathrm{DF}_{x^{\circ}}\right)^{-1}$
- Bound $b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|$
- Bound Lipschitz ratio over $\bar{B}\left(x^{\circ}, r\right)$:
$\mu(r) \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathbf{D} \mathbf{F}_{x}\right\|$
- Choose r such that $\quad b+\mu(r) r \leq r$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$
- Build Newton-like operator
$\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x, \quad \mathbf{A} \approx\left(\mathrm{DF}_{x^{\circ}}\right)^{-1}$
- Bound $b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|$
- Bound Lipschitz ratio over $\bar{B}\left(x^{\circ}, r\right)$:

$$
\mu(r) \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathrm{D} \mathbf{F}_{x}\right\|
$$

- Choose r such that $\quad b+\mu(r) r \leq r$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$
- Build Newton-like operator
$\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x, \quad \mathbf{A} \approx\left(\mathrm{D} \mathbf{F}_{x^{\circ}}\right)^{-1}$
- Bound $b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|$
- Bound Lipschitz ratio over $\bar{B}\left(x^{\circ}, r\right)$:

$$
\mu(r) \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathbf{D} \mathbf{F}_{x}\right\|
$$

- Choose r such that $b+\mu(r) r \leq r$

[^0]
A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$
- Build Newton-like operator
$\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x, \quad \mathbf{A} \approx\left(\mathrm{DF}_{x^{\circ}}\right)^{-1}$
- Bound $b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|$
- Bound Lipschitz ratio over $\bar{B}\left(x^{\circ}, r\right)$:

$$
\mu(r) \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathrm{D} \mathbf{F}_{x}\right\|
$$

- Choose r such that $\quad b+\mu(r) r \leq r$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

A Posteriori Newton-like Validation Methods

- Goal: Rigorously approximate $x^{*} \in X$, solution of $\mathbf{F} \cdot x=0$ with $\mathbf{F}: X \rightarrow Y$.

- Compute an approx $x^{\circ} \in X$
- Build Newton-like operator
$\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x, \quad \mathbf{A} \approx\left(\mathrm{DF}_{x^{\circ}}\right)^{-1}$
- Bound $b:=\left\|\mathbf{T} \cdot x^{\circ}-x^{\circ}\right\|$
- Bound Lipschitz ratio over $\bar{B}\left(x^{\circ}, r\right)$:
$\mu(r) \geq \sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathrm{D} \mathbf{T}_{x}\right\|=\sup _{x \in \bar{B}\left(x^{\circ}, r\right)}\left\|\mathbf{1}_{X}-\mathbf{A} \cdot \mathrm{D} \mathbf{F}_{x}\right\|$
- Choose r such that $\quad b+\mu(r) r \leq r$

Banach Fixed-Point Theorem

\mathbf{F} has a unique root x^{*} in $\bar{B}\left(x^{\circ}, r\right)$

Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

Validated approximations for the reciprocal and square-root of a function (with applications to Computer-Assisted Proofs and Hilbert's 16th Problem)

Rigorous Polynomial Approximations

Definition

A pair $(P, \varepsilon) \in \mathbb{R}[X] \times \mathbb{R}_{+}$is a rigorous polynomial approximation (RPA) of f for a given norm $\|\cdot\|$ if $\|f-P\| \leq \varepsilon$.

Example: sup-norm over $[-1,1]$:

$$
f \in(P, \varepsilon) \Leftrightarrow|f(t)-P(t)| \leq \varepsilon \quad \forall t \in[-1,1]
$$

Some elementary operations:

- $(P, \varepsilon)+(Q, \eta):=(P+Q, \varepsilon+\eta)$,
- $(P, \varepsilon)-(Q, \eta):=(P-Q, \varepsilon+\eta)$,
- $(P, \varepsilon) \cdot(Q, \eta):=(P Q,\|Q\| \eta+\|P\| \varepsilon+\eta \varepsilon)$
- $\int_{0}(P, \varepsilon):=\left(\int_{0}^{t} P(s) \mathrm{d} s, \varepsilon\right)$

Example:

$$
r(t)=\int_{0}^{t} k(s)(f(s)+g(s)-h(s)) \mathrm{d} s
$$

RPAs for the reciprocal or division

Given $f, g \in \mathcal{C}([-1,1])$, compute an approximation $x^{\circ} \approx \frac{f}{g}$ and an error bound $\left\|x^{\circ}-\frac{f}{g}\right\|_{\infty}$. Strategy:

- Newton-like operator \mathbf{T} with unique fixed point $x^{\star}=\frac{f}{g}$:

$$
\mathbf{T} \cdot x=x-\tilde{\psi}(g x-f) \quad \tilde{\psi} \approx 1 / g
$$

RPAs for the reciprocal or division

Given $f, g \in \mathcal{C}([-1,1])$, compute an approximation $x^{\circ} \approx \frac{f}{g}$ and an error bound $\left\|x^{\circ}-\frac{f}{g}\right\|_{\infty}$. Strategy:

- Newton-like operator \mathbf{T} with unique fixed point $x^{\star}=\frac{f}{g}$:

$$
\mathbf{T} \cdot x=x-\tilde{\psi}(g x-f) \quad \tilde{\psi} \approx 1 / g
$$

- Is \mathbf{T} contracting?

$$
\|\mathbf{D T}\|=\|1-\tilde{\psi} g\|_{\infty}=\mu<1
$$

RPAs for the reciprocal or division

Given $f, g \in \mathcal{C}([-1,1])$, compute an approximation $x^{\circ} \approx \frac{f}{g}$ and an error bound $\left\|x^{\circ}-\frac{f}{g}\right\|_{\infty}$. Strategy:

- Newton-like operator \mathbf{T} with unique fixed point $x^{\star}=\frac{f}{g}$:

$$
\mathbf{T} \cdot x=x-\tilde{\psi}(g x-f) \quad \tilde{\psi} \approx 1 / g
$$

- Is T contracting?

$$
\|\mathrm{DT}\|=\|1-\tilde{\psi} g\|_{\infty}=\mu<1
$$

- Apply the Banach fixed-point theorem:

$$
\left\|\boldsymbol{x}^{\circ}-\mathbf{T} \cdot \boldsymbol{x}^{\circ}\right\|_{\infty}=\left\|\tilde{\psi}\left(g \boldsymbol{x}^{\circ}-f\right)\right\|_{\infty} \leq b
$$

RPAs for the reciprocal or division

Given $f, g \in \mathcal{C}([-1,1])$, compute an approximation $x^{\circ} \approx \frac{f}{g}$ and an error bound $\left\|x^{\circ}-\frac{f}{g}\right\|_{\infty}$. Strategy:

- Newton-like operator \mathbf{T} with unique fixed point $x^{\star}=\frac{f}{g}$:

$$
\mathbf{T} \cdot x=x-\tilde{\psi}(g x-f) \quad \tilde{\psi} \approx 1 / g
$$

- Is T contracting?

$$
\|\mathrm{DT}\|=\|1-\tilde{\psi} g\|_{\infty}=\mu<1
$$

- Apply the Banach fixed-point theorem:

$$
\left\|\boldsymbol{x}^{\circ}-\mathbf{T} \cdot \boldsymbol{x}^{\circ}\right\|_{\infty}=\left\|\tilde{\psi}\left(g \boldsymbol{x}^{\circ}-f\right)\right\|_{\infty} \leq b \quad \Rightarrow \quad\left\|\boldsymbol{x}^{\circ}-x^{\star}\right\|_{\infty} \leq r:=b /(1-\mu)
$$

RPAs for the reciprocal or division

Chebyshev series

Taylor series

Example

Compute $x^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

RPAs for the reciprocal or division

Coeffs' convergence rate

Example

Compute $x^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

RPAs for the reciprocal or division

Coeffs' convergence rate

Example

Compute $x^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

RPAs for the reciprocal or division

Coeffs' convergence rate

Example

Compute $x^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

RPAs for the reciprocal or division

Coeffs' convergence rate

Example

Compute $x^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

RPAs for the reciprocal or division

Example

Compute $x^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

RPAs for the reciprocal or division

Example

Compute $x^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

- Newton-like operator $\mathbf{T} \cdot x=x-\tilde{\psi}\left(\left(1+\varepsilon t^{2}\right) x-1\right) \quad \tilde{\psi} \approx 1 /\left(1+\varepsilon t^{2}\right)$

RPAs for the reciprocal or division

Example

Compute $\boldsymbol{x}^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

- Newton-like operator $\mathbf{T} \cdot x=x-\tilde{\psi}\left(\left(1+\varepsilon t^{2}\right) x-1\right) \quad \tilde{\psi} \approx 1 /\left(1+\varepsilon t^{2}\right)$
- Is T contracting?

$$
\|\mathbf{D T}\|=\left\|1-\tilde{\psi}\left(1+\varepsilon t^{2}\right)\right\|_{\infty}=\mu<1
$$

RPAs for the reciprocal or division

Example

Compute $\boldsymbol{x}^{\circ}(t) \approx \frac{1}{1+\varepsilon t^{2}}$ and $r \geq\left\|x^{\circ}(t)-\frac{1}{1+\varepsilon t^{2}}\right\|_{\infty}$ for $t \in[-1,1]$ and fixed ε.

- Newton-like operator $\mathbf{T} \cdot x=x-\tilde{\psi}\left(\left(1+\varepsilon t^{2}\right) x-1\right) \quad \tilde{\psi} \approx 1 /\left(1+\varepsilon t^{2}\right)$
- Is T contracting?

$$
\|\mathbf{D T}\|=\left\|1-\tilde{\psi}\left(1+\varepsilon t^{2}\right)\right\|_{\infty}=\mu<1
$$

- Apply the Banach fixed-point theorem:

$$
\left\|\boldsymbol{x}^{\circ}-\mathbf{T} \cdot \boldsymbol{x}^{\circ}\right\|_{\infty}=\left\|\tilde{\psi}\left(\left(1+\varepsilon t^{2}\right) \boldsymbol{x}^{\circ}-1\right)\right\|_{\infty} \leq b \quad \Rightarrow \quad\left\|\boldsymbol{x}^{\circ}-x^{\star}\right\|_{\infty} \leq r:=b /(1-\mu)
$$

Division of two Chebyshev models

Given:

- $f, g \in \mathcal{C}([-1,1])$ represented by Chebyshev models $\boldsymbol{f}=\left(f^{\circ}, \varepsilon\right)$ and $\boldsymbol{g}=\left(g^{\circ}, \eta\right)$,
- $h^{\circ} \in \mathbb{R}[x]$ a polynomial approximation of $h^{*}=f / g$,
- $k^{\circ} \in \mathbb{R}[x]$ a polynomial approximation of $1 / g$,
we have the following rigorous upper bound on the approximation error:

$$
\left\|h^{\circ}-f / g\right\|_{\infty} \leq \tau=\frac{b}{1-\mu}
$$

provided that we have computed b and $\mu<1$ such that:

$$
\begin{gathered}
\left\|1-k^{\circ} g^{\circ}\right\|_{\infty}+\eta\left\|k^{\circ}\right\|_{\infty} \leq \mu \\
\left\|k^{\circ}\left(g^{\circ} h^{\circ}-f^{\circ}\right)\right\|_{\infty}+\eta\left\|k^{\circ} h^{\circ}\right\|_{\infty}+\varepsilon\left\|k^{\circ}\right\|_{\infty} \leq b .
\end{gathered}
$$

Hence, $\boldsymbol{h}=\left(h^{\circ}, \tau\right)$ is a Chebyshev model for $h^{*}=f / g$.

Square Root of an RPA with a Newton-like approach

- $x^{\circ}(t) \approx \sqrt{f(t)}$ where $f(t)=1+\varepsilon t^{2}$.

Square Root of an RPA with a Newton-like approach

- $x^{\circ}(t) \approx \sqrt{f(t)}$ where $f(t)=1+\varepsilon t^{2}$.
- $x^{\star}=\sqrt{f}$ unique fixed point of:

$$
\mathbf{T} \cdot x=x-\frac{\tilde{\psi}}{2}\left(x^{2}-f\right) \quad \tilde{\psi}(t) \approx 1 / x^{\circ}(t) \approx 1 / \sqrt{f(t)}
$$

Square Root of an RPA with a Newton-like approach

- $x^{\circ}(t) \approx \sqrt{f(t)}$ where $f(t)=1+\varepsilon t^{2}$.
- $x^{\star}=\sqrt{f}$ unique fixed point of:

$$
\mathbf{T} \cdot x=x-\frac{\tilde{\psi}}{2}\left(x^{2}-f\right) \quad \tilde{\psi}(t) \approx 1 / x^{\circ}(t) \approx 1 / \sqrt{f(t)}
$$

- Is T contracting?
$\|\mathrm{DT}(x)\|=\|1-\tilde{\psi} x\| \leq\left\|1-\tilde{\psi} \boldsymbol{x}^{\circ}\right\|+\|\tilde{\psi}\|\left\|x-\boldsymbol{x}^{\circ}\right\|$

Square Root of an RPA with a Newton-like approach

- $x^{\circ}(t) \approx \sqrt{f(t)}$ where $f(t)=1+\varepsilon t^{2}$.
- $x^{\star}=\sqrt{f}$ unique fixed point of:

$$
\mathbf{T} \cdot x=x-\frac{\tilde{\psi}}{2}\left(x^{2}-f\right) \quad \tilde{\psi}(t) \approx 1 / \boldsymbol{x}^{\circ}(\boldsymbol{t}) \approx 1 / \sqrt{f(t)}
$$

- Is T contracting?

Square Root of an RPA with a Newton-like approach

- $x^{\circ}(t) \approx \sqrt{f(t)}$ where $f(t)=1+\varepsilon t^{2}$.
- $x^{\star}=\sqrt{f}$ unique fixed point of:

$$
\mathbf{T} \cdot x=x-\frac{\tilde{\psi}}{2}\left(x^{2}-f\right) \quad \tilde{\psi}(t) \approx 1 / \boldsymbol{x}^{\circ}(\boldsymbol{t}) \approx 1 / \sqrt{f(t)}
$$

- Is T contracting?
$\mu=\sup _{\left\|x-\boldsymbol{x}^{\circ}\right\| \leq r}\|\mathrm{DT}(x)\| \leq\left\|1-\tilde{\psi} \boldsymbol{x}^{\circ}\right\|+\|\tilde{\psi}\| r$

- Stable neighborhood for x° :

$$
\left\|\boldsymbol{x}^{\circ}-\mathbf{T} \cdot \boldsymbol{x}^{\circ}\right\|+\boldsymbol{\mu} r \leq r
$$

Square Root of an RPA with a Newton-like approach

- $x^{\circ}(t) \approx \sqrt{f(t)}$ where $f(t)=1+\varepsilon t^{2}$.
- $x^{\star}=\sqrt{f}$ unique fixed point of:

$$
\mathbf{T} \cdot x=x-\frac{\tilde{\psi}}{2}\left(x^{2}-f\right) \quad \tilde{\psi}(t) \approx 1 / \boldsymbol{x}^{\circ}(t) \approx 1 / \sqrt{f(t)}
$$

- Is T contracting?

- Stable neighborhood for \boldsymbol{x}° :
$\left\|\tilde{\psi}\left(\boldsymbol{x}^{\circ 2}-f\right) / 2\right\|+r\left(\left\|1-\tilde{\psi} \boldsymbol{x}^{\circ}\right\|+\|\tilde{\psi}\| r\right) \leq r$

Square Root of an RPA with a Newton-like approach

- $x^{\circ}(t) \approx \sqrt{f(t)}$ where $f(t)=1+\varepsilon t^{2}$.
- $x^{\star}=\sqrt{f}$ unique fixed point of:

$$
\mathbf{T} \cdot x=x-\frac{\tilde{\psi}}{2}\left(x^{2}-f\right) \quad \tilde{\psi}(t) \approx 1 / \boldsymbol{x}^{\circ}(\boldsymbol{t}) \approx 1 / \sqrt{f(t)}
$$

- Is \mathbf{T} contracting?
$\boldsymbol{\mu}=\sup _{\left\|x-\boldsymbol{x}^{\circ}\right\| \leq r}\|\mathrm{DT}(x)\| \leq\left\|1-\tilde{\psi} \boldsymbol{x}^{\circ}\right\|+\|\tilde{\psi}\| r$

- Stable neighborhood for x° :
$\left\|\tilde{\psi}\left(\boldsymbol{x}^{\circ 2}-f\right) / 2\right\|+r\left(\left\|1-\tilde{\psi} \boldsymbol{x}^{\circ}\right\|+\|\tilde{\psi}\| r\right) \leq r$

- Apply the Banach fixed-point theorem!

Square root of a Chebyshev model

Given:

- $f \in \mathcal{C}([-1,1])$ represented by a Chebyshev model $\boldsymbol{f}=\left(f^{\circ}, \varepsilon\right)$,
- $g^{\circ} \in \mathbb{R}[x]$ a polynomial approximation of $g^{*}=\sqrt{f}$,
- $k^{\circ} \in \mathbb{R}[x]$ a polynomial approximation of $1 / g^{\circ}$,
we have the following rigorous upper bound on the approximation error:

$$
\left\|g^{\circ}-\sqrt{f}\right\|_{\infty} \leq \eta=\frac{\eta^{\prime}}{1-\mu}
$$

provided that we have computed $\mu_{0}, \mu_{1}, \eta^{\prime}, \Delta, r^{\circ}, \mu$ satisfying:

$$
\begin{gathered}
\left\|1-k^{\circ} g^{\circ}\right\|_{\infty} \leq \mu_{0}<1,\left\|k^{\circ}\right\|_{\infty} \leq \mu_{1},\left\|k^{\circ}\left(g^{\circ} 2-f^{\circ}\right)\right\|_{\infty}+\varepsilon\left\|k^{\circ}\right\|_{\infty} \leq 2 \eta^{\prime} \\
\Delta:=\left(1-\mu_{0}\right)^{2}-4 \mu_{1} \eta^{\prime} \geq 0, \quad r^{\circ}:=\frac{1-\mu_{0}-\sqrt{\Delta}}{2 \mu_{1}} \\
\mu:=\mu_{0}+\mu_{1} r^{\circ}<1 .
\end{gathered}
$$

Hence, $\boldsymbol{g}=\left(g^{\circ}, \eta\right)$ is a Chebyshev model for $g^{*}=\sqrt{f}$.

Quadrature: an example

$$
\text { Let } J=\int_{0}^{3} \sin \left(\frac{1}{\left(10^{-3}+(1-x)^{2}\right)^{3 / 2}}\right) \mathrm{d} x \text {. }
$$

- Chen, '06: 0.7578918118.

WHAT IS THE CORRECT ANSWER?
Using Chebyshev-based RPAs*: $0.749974368527[1,3]$.

Quadrature: an example

- Chen, '06: 0.7578918118.

WHAT IS THE CORRECT ANSWER?

$$
\text { Using Chebyshev-based RPAs*: } \quad 0.749974368527[1,3] .
$$

[^1]Few remarks about basic ODE validation

Rough enclosures of IVP differential equations

$$
\begin{aligned}
& u^{\prime}(t)=f(t, u(t)) \\
& u\left(t_{0}\right)=u_{0}, u_{0} \in U_{0}, t \in[0, T]
\end{aligned}
$$

with $f \in \mathcal{C}([0, T] \times \mathbb{R})$, Lipschitz-continuous in the second variable (uniformly in t): $\exists L>0$ s.t $|f(t, x)-f(t, y)| \leq L|x-y|$ for all $(t, x),(t, y) \in[0, T] \times \mathbb{R}$.

Verification condition

If there exist $0<h \leq T$ and $U_{h} \in \mathbb{R}, U_{0} \subseteq U_{h}$ s.t.

$$
U_{0}+[0, h] f\left([0, h], U_{h}\right) \subset U_{h}
$$

then the IVP has a unique solution $u_{u_{0}} \in \mathcal{C}^{1}([0, h])$ for each $u_{0} \in U_{0}$.

Rough enclosures of IVP differential equations

Proof sketch:

- Integral fixed-point reformulation: $\mathbf{T}: \mathcal{C}([0, h]) \rightarrow \mathcal{C}([0, h])$

$$
\begin{gathered}
\mathbf{T} u(t):=u_{0}+\int_{0}^{t} f(s, u(s)) \mathrm{d} s, t \in[0, h] \\
u=\mathbf{T} u
\end{gathered}
$$

- Check Banach fixed point hypotheses:
- \mathbf{T} is a contraction on $\mathcal{C}([0, h])$ w.r.t. the norm:

$$
\|u\|_{1}=\max _{0 \leq t \leq h} e^{-L t}|u(t)|
$$

- The set $X:=\left\{u \in \mathcal{C}([0, h]): u([0, h]) \subseteq U_{h}\right\}$ is closed and bounded in $\left(\mathcal{C}([0, h]),\|\cdot\|_{1}\right)$;
- If

$$
U_{0}+[0, h] f\left([0, h], U_{h}\right) \subset U_{h}
$$

then $\mathbf{T} X \subseteq X$ for each $u_{0} \in U_{0}$.

[^2]
Rough enclosures of IVP differential equations

$$
\begin{aligned}
& \text { Example } \\
& x^{\prime \prime}=-\sin (x)+0.1 x^{\prime}, \quad h=0.25 \\
& \text {. } \\
& {[\mathbf{X}]=[1,2] \times[0.4,0.5]} \\
& {[\mathbf{Y}]=[\mathbf{X}]+h[-.2,1.5] * f([\mathbf{X}]) \subset[0.9749,2.1875] \times[0.04,0.548]} \\
& {[\mathrm{Z}]=[\mathbf{X}]+[0, h] * f([\mathrm{Y}]) \subset[1.0,2.137] \times[0.1502,0.5] \subset \operatorname{int}([\mathbf{Y}])}
\end{aligned}
$$

[^3]
A Posteriori Newton-like Validation Methods

\rightsquigarrow Trajectories for Linearized Impulsive Spacecraft Rendezvous Problem

Lin. Keplerian Motion [Tschauner-Hempel]

$$
\begin{gathered}
z^{\prime \prime}(\nu)+2 x^{\prime}(\nu)-\frac{3}{1+e \cos \nu} z(\nu)=0 \\
x^{\prime \prime}(\nu)-2 z^{\prime}(\nu)=0 \\
y^{\prime \prime}(\nu)+y(\nu)=0
\end{gathered}
$$

\Rightarrow Efficient spectral methods based on truncated Chebyshev series with a posteriori validation

- General LODEs (nonpolynomial coefficients); Coupled systems of LODEs

[^4]

Outlets for Rigorous Computing

- Solve problems with the required accuracy
\rightarrow guarantees/proofs about results.

Outlets for Rigorous Computing

- Solve problems with the required accuracy
\rightarrow guarantees/proofs about results.
- Modern computer differential algebra algorithms + approximation in suitable functional spaces
\rightsquigarrow obtain efficient approximations and analytic error bounds
\rightsquigarrow Theoretical and practical complexity issues for generic classes of problems

Outlets for Rigorous Computing

- Solve problems with the required accuracy
\rightarrow guarantees/proofs about results.
- Modern computer differential algebra algorithms + approximation in suitable functional spaces
\rightsquigarrow obtain efficient approximations and analytic error bounds
\rightsquigarrow Theoretical and practical complexity issues for generic classes of problems
- CAP for Dynamical Systems

Outlets for Rigorous Computing

- Solve problems with the required accuracy
\rightarrow guarantees/proofs about results.
- Modern computer differential algebra algorithms + approximation in suitable functional spaces
\rightsquigarrow obtain efficient approximations and analytic error bounds
\rightsquigarrow Theoretical and practical complexity issues for generic classes of problems
- CAP for Dynamical Systems
- Interaction with Optimization in the framework of Optimal Control Aerospace Applications

Outlets for Rigorous Computing

- Solve problems with the required accuracy
\rightarrow guarantees/proofs about results.
- Modern computer differential algebra algorithms + approximation in suitable functional spaces
\rightsquigarrow obtain efficient approximations and analytic error bounds
\rightsquigarrow Theoretical and practical complexity issues for generic classes of problems
- CAP for Dynamical Systems
- Interaction with Optimization in the framework of Optimal Control Aerospace Applications
- Formal proofs of the above

Thank you for your attention!

[^0]: Example courtesy of F. Bréhard, Certified Numerics in Function Spaces. PhD Thesis, 2019.

[^1]: *N. Brisebarre, M.J., Chebyshev interpolation polynomial-based tools for rigorous computing, ISSAC2010

[^2]: * Both $\left(\mathcal{C}([0, h]),\|\cdot\|_{1}\right)$ and $\left(\mathcal{C}([0, h]),\|\cdot\|_{\infty}\right)$ are Banach spaces and the norms are equivalent since: $e^{-L h}\|u\|_{\infty} \leq\|u\|_{1} \leq\|u\|_{\infty}$, for all $u \in \mathcal{C}([0, h])$

[^3]: *Courtesy of D. Wilczak, http://ww2.ii.uj.edu.pl/~wilczak/capd-tutorial/CAPD_tutorial_part_I.pdf

[^4]: *F. Bréhard, N. Brisebarre, and M. J., Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations, ACM TOMS, 2018

