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Outline

Can/Should we trust the numerics?

Floating-Point Arithmetic

Validated Computing with Interval Arithmetic

Rigorous Polynomial Approximations

A posteriori error bounds with Newton-like methods

Applications:
Computer-aided proof for the existence of sinks in the Henon map
Validated approximation of solutions of Newton-like operators
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Validated Computing Strategies

Two strategies:

Iterative re�nement of enclosures

All computations are validated

Numerical solution easily available

Existence + Explicit error bounds for a
true solution ⇝ �xed-point arguments

A Posteriori Newton-like Validation
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Part 1: Computer-Assisted Proof for Finding Sinks of the Henon Map



Hénon attractor

Hénon Map

ha,b(x1, x2) = (1 + x2 − ax2
1, bx1)

Map iterations: hi+1
a,b := ha,b ◦ hi

a,b, i ∈ N∗.

For classical parameter values a = 1.4, b = 0.3 one observes the so-called Hénon attractor
by iterating hn

a,b, n → ∞:
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Open question: Is this a Strange Attractor?
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Some basic terminology

Orbit of x: Γ(x) = Γ+(x) ∪ Γ−(x)

Forward orbit:
Γ+(x) := {hn

a,b(x), n ∈ N}

Backward orbit:
Γ−(x) := {y : ∃n ∈ N : hn

a,b(y) = x}
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Periodic orbit Γn(x) of period n if ∃n ∈ N∗ s.t. hn
a,b(x) = x.

Stable orbit Γ(x)

Let d(x, y) = ||x− y|| and d(y,Γ(x)) = inf
z∈Γ(x)

d(y, z).

Γ(x) is stable if given ε > 0, ∃δ > 0 s.t. d(hn
a,b(y),Γ(x)) < ε, ∀n ∈ N∗ and

∀y s.t. d(y,Γ(x)) < δ.

Asymptotically Stable orbit Γ(x) (sink)

Γ(x) is asymptotically stable if it is stable and (by choosing δ smaller if necessary)
d(hn

a,b(y),Γ(x)) → 0 as n → ∞.
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Some basic terminology II

Attractor

describes asymptotic behaviour of typical orbits.

Attracting Sets
Let T be a compact set such that h(T ) = T .
T is called attracting if there exists an open neighborhood U of T such that
∞⋂
i=0

hi(U) = T .

Attractor: An attracting set which contains a dense orbit.

Basin of attraction, B(T ): largest such U .

Strange Attractor

For almost all pairs of points x, y ∈ B(T ) there exists k ∈ N∗ s.t. hk(x) and hk(y) separate
by at least a constant δh.
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Hénon Attractor - Sensitivity to initial conditions

Hénon Map

ha,b(x1, x2) = (1 + x2 − ax2
1, bx1)
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Chaos: When the present determines the future, but the approximate present does not
approximately determine the future.
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Hénon Attractor - Fractal Dimension
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Some basic terminology III - Strange Attractor
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(a) Hénon Attractor

(b) Lorenz Attractor (c) Ueda Attractor

Name coined by Takens and Ruelle ≃ 1971

Ruelle (The Mathematical Intelligencer 2, 126, 1980): The name is beautiful, and well
suited to these astonishing objects, of which we understand so little.
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Open Question: Is Hénon Attractor a Strange Attractor?

Hénon Map

ha,b(x1, x2) = (1 + x2 − ax2
1, bx1)
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Chaotic map: aperiodic trajectories (generally believed)

There is a set of parameters (near b = 0) with positive Lebesgue measure for which the
Hénon map has a strange attractor. [Benedicks & Carleson,'91].

The parameters space is believed to be densely �lled with regions, where the attractor is
periodic.
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Example of sink in Hénon attractor [Galias & Tucker 2013]

Hénon Map

ha,b(x1, x2) = (1 + x2 − ax2
1, bx1)

Let a = 1.399999486944, b = 0.3. Trajectory composed of 10000 points:

cc
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(a) 5 · 109 iterations skipped
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(b) 6 · 109 iterations skipped.

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).
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Hénon attractor

Hénon Map

ha,b(x1, x2) = (1 + x2 − ax2
1, bx1)

Goal: Given (a, b), prove existence of sinks (stable periodic orbits).

Method:

1 Find numerical approximation of sinks
Typical values: 106 parameters, 103 initial values, orbit length 106, . . . , 109.

chaotic → multiple precision

2 A posteriori validation of existence and stability with interval arithmetic

High parallelism → Graphics
Processing Units (GPUs)
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Rigorous a posteriori proof of existence: interval Newton operator

Theorem

Let F : D ⊆ Rn → Rn, F ∈ C1(D), x ∈ ID, x̂ ∈ x.

N(x) := x̂− F ′(x)−1F (x̂)

If N(x) is well-de�ned, then the following statements hold:

(1) if x contains a zero x∗ of F , then so does N(x) ∩ x;
(2) if N(x) ∩ x = ∅, then x has no zeros of F ;

(3) if N(x) ⊆ x, then x contains a unique zero of F ;

ID is the set of all intervals included in D.
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Validation of periodic orbits using Newton operator [Galias 2001], [Galias &
Tucker, 2011, 2013]
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bins for detecting sinks

(x0, bxp−1)

(xp−1, bxp−2) (x1, bx0)

x1 = 1− ax2
0 + bxp−1

Let F : Rp → Rp de�ned by:

[F (x)]k = 1− ax2
k + bx(k−1)mod p − x(k+1)mod p, k = 0, . . . , p− 1.

Then F (x0, . . . , xp) = 0 iif z0 = (x0, y0) = (x0, bxp−1) is a �xed point of hp

Choose r > 0 s.t. xk = [x̂k − r, x̂k + r].

Verify that N(x) ⊆ x, with:

N(x) := x̂− F ′(x)−1F (x̂)
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Validation of periodic orbits using Newton operator [Galias 2001], [Galias &
Tucker, 2011, 2013]

Let F : Rp → Rp de�ned by:

[F (x)]k = 1− ax2
k + bx(k−1)mod p − x(k+1)mod p, k = 0, . . . , p− 1.

Numerical approx of sink x̂ given.

Choose r > 0 s.t. xk = [x̂k − r, x̂k + r].

Verify that N(x) ⊆ x, with:

N(x) := x̂− F ′(x)−1F (x̂)︸ ︷︷ ︸
y


−2ax0 −1 0 · · · b

b −2ax1 −1 · · · 0
...

...
. . .

...
0 · · · b −2axp−2 −1
−1 0 · · · b −2axp−1

 ·


y0
y1
...

yp−2

yp−1

 =


F (x̂)0
F (x̂)1

...
F (x̂)p−2

F (x̂)p−1
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Example of sink in Hénon attractor [Galias & Tucker 2013]

Let a = 1.399999486944, b = 0.3.
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Validation example: x̂=-1.22783854559, -0.73659038778,..., 1.246771101387 and
r = 10−7.
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Examples of found Hénon sinks [Galias & Tucker, 2013]

a p w br λ1

1.399922051 25 5.522−12 2.473−12 −0.00132
1.39997174948 30 1.354−11 3.561−12 −0.01887
1.3999769102 18 3.207−09 1.014−09 −0.05306
1.39998083519 24 1.703−11 7.384−12 −0.02819
1.399984477 20 8.875−10 4.076−10 −0.05099
1.39999492185 22 3.686−11 1.531−11 −0.09600
1.3999964733062 39 2.784−13 1.115−13 −0.03547
1.399999486944 33 1.110−12 6.901−13 −0.01843
1.40000929916 25 1.118−11 5.128−12 −0.08379
1.4000227433 21 2.262−10 7.901−11 −0.05612
1.40002931695 27 5.782−11 2.646−11 −0.01140
1.40006377472 27 8.692−11 3.810−11 −0.05636
1.40006667358 24 6.278−11 2.646−11 −0.01112
1.4000843045 27 9.400−11 4.572−11 −0.06870
1.40009110518 22 3.493−11 1.531−11 −0.02157
1.4000967515 26 2.463−10 1.365−10 −0.13233

Note: The orbit stability depends on the eigenvalues of Jp(z0) being inside the unit circle,
with,

Jp(z0) = (hp)′(z0) = h′(hp−1(z0)) · · ·h′(h(z0)) · h′(z0).
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Part 2: Validated approximation of solutions of Newton-like operators



Part 2: Validated approximation of solutions of Newton-like operators



Compute Bounds with Contraction Mapping principle

Banach Fixed Point Theorem

(X, d) a complete metric space, T : X → X, x◦ ∈ X, and compute µ, b, r s.t.

d(x◦,T · x◦) ≤ b

T is µ-Lipschitz over the closed ball B̄(x◦, r) := {x ∈ X | d(x, x◦) ≤ r}:

d(T · x1,T · x2) ≤ µd(x1, x2), x1, x2 ∈ B̄(x◦, r)

Also ensure that:

µ < 1 � T is contracting over B̄(x◦, r)

b+ µr ≤ r � B̄(x◦, r) is strongly stable

Then T admits a unique �xed-point x∗ in B̄(x◦, r).

x

T ·x

T2 ·x

r

b

μ rμb

B(x ,
r)

o

o

o

o

18 / 33



A Posteriori Newton-like Validation Methods

Target: x∗ ∈ X solution of F · x = 0 where F : X → Y is di�erentiable

Compute a candidate approximation x◦ ∈ X

Newton-like operator T : X → X, x 7→ x−A · F · x :

with A ≈ (DFx◦ )−1

b := ∥T · x◦ − x◦∥

Compute a rigorous Lipschitz constant for T over B̄(x◦, r):

µ ≥ sup
x∈B̄(x◦,r)

∥DTx∥ = sup
x∈B̄(x◦,r)

∥1X −A ·DFx∥

◦ µ does not depend on r if F is a�ne
⇒ Choose r := b/(1 − µ)

◦ Otherwise, r and µ(r) must satisfy:

b + µ(r)r ≤ r

which usually expands to a polynomial equation over r

⇒ F has a unique root x∗ in B̄(x◦, r).
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A Posteriori Newton-like Validation Methods

▶ Goal: Rigorously approximate x∗ ∈ X, solution of F · x = 0 with F : X → Y .

−1 0 1

−1

0

1

c

s

sin3 ϑ + cos 3ϑ = 0

⇔

{ s3 + 4c3 − 3c = 0
c2 + s2 − 1 = 0

◦ Compute an approx x◦ ∈ X

◦ Build Newton-like operator
T · x = x−A · F · x, A ≈ (DFx◦ )−1

◦ Bound b := ∥T · x◦ − x◦∥
◦ Bound Lipschitz ratio over B̄(x◦, r):

µ(r) ≥ sup
x∈B̄(x◦,r)

∥DTx∥ = sup
x∈B̄(x◦,r)

∥1X−A·DFx∥

◦ Choose r such that b+ µ(r)r ≤ r

Banach Fixed-Point Theorem

F has a unique root x∗ in B̄(x◦, r)

Example courtesy of F. Bréhard, Certi�ed Numerics in Function Spaces. PhD Thesis, 2019.
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Validated approximations for the reciprocal and square-root of a function
(with applications to Computer-Assisted Proofs

and Hilbert's 16th Problem)



Rigorous Polynomial Approximations

De�nition

A pair (P, ε) ∈ R[X]× R+ is a rigorous polynomial
approximation (RPA) of f for a given norm ∥ · ∥ if
∥f − P∥ ≤ ε.

Example: sup-norm over [−1, 1]:

f ∈ (P, ε) ⇔ |f(t)− P (t)| ≤ ε ∀t ∈ [−1, 1]

Some elementary operations:

(P, ε) + (Q, η) := (P +Q, ε+ η),

(P, ε)− (Q, η) := (P −Q, ε+ η),

(P, ε) · (Q, η) := (PQ, ∥Q∥η + ∥P∥ε+ ηε)∫
0(P, ε) := (

∫ t
0 P (s)ds, ε)

Example:

r(t) =

∫ t

0
k(s)(f(s) + g(s)− h(s))ds

÷ ?
√

?

∫
0

×

K −

+

F G

H
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RPAs for the reciprocal or division

Given f, g ∈ C([−1, 1]), compute an approximation x◦ ≈
f

g
and an error bound

∥∥∥∥x◦ −
f

g

∥∥∥∥
∞
.

Strategy:

▶ Newton-like operator T with unique �xed point x⋆ =
f

g
:

T · x = x− ψ̃(gx− f) ψ̃ ≈ 1/g

▶ Is T contracting?
∥DT∥ = ∥1− ψ̃g∥∞ = µ < 1

▶ Apply the Banach �xed-point theorem:

∥x◦ −T · x◦∥∞ = ∥ψ̃(gx◦ − f)∥∞ ≤ b

⇒ ∥x◦ − x⋆∥∞ ≤ r := b/(1− µ)
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RPAs for the reciprocal or division

Chebyshev series Taylor series

Chebyshev series approx (ε = 25)

Example

Compute x◦(t) ≈
1

1 + εt2
and r ≥

∥∥∥∥x◦(t)−
1

1 + εt2

∥∥∥∥
∞

for t ∈ [−1, 1] and �xed ε.

▶ Newton-like operator T · x = x− ψ̃((1 + εt2)x− 1) ψ̃ ≈ 1/(1 + εt2)
▶ Is T contracting?

∥DT∥ = ∥1− ψ̃(1 + εt2)∥∞ = µ < 1

▶ Apply the Banach �xed-point theorem:

∥x◦ −T · x◦∥∞ = ∥ψ̃((1 + εt2)x◦ − 1)∥∞ ≤ b
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RPAs for the reciprocal or division
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 deg 10

Chebyshev series approx (ε = 25) Coe�s' convergence rate
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Division of two Chebyshev models

Given:

f, g ∈ C([−1, 1]) represented by Chebyshev models f = (f◦, ε) and g = (g◦, η),

h◦ ∈ R[x] a polynomial approximation of h∗ = f/g,

k◦ ∈ R[x] a polynomial approximation of 1/g,

we have the following rigorous upper bound on the approximation error:

∥h◦ − f/g∥∞ ≤ τ =
b

1− µ
,

provided that we have computed b and µ < 1 such that:

∥1− k◦g◦∥∞ + η∥k◦∥∞ ≤ µ,

∥k◦(g◦h◦ − f◦)∥∞ + η∥k◦h◦∥∞ + ε∥k◦∥∞ ≤ b.

Hence, h = (h◦, τ) is a Chebyshev model for h∗ = f/g.
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Square Root of an RPA with a Newton-like approach

▶ x◦(t) ≈
√

f(t) where f(t) = 1 + εt2.

▶ x⋆ =
√
f unique �xed point of:

T · x = x−
ψ̃

2
(x2 − f) ψ̃(t) ≈ 1/x◦(t) ≈ 1/

√
f(t)

▶ Is T contracting? ▶ Stable neighborhood for x◦:
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▶ Apply the Banach �xed-point theorem!
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Square root of a Chebyshev model

Given:

f ∈ C([−1, 1]) represented by a Chebyshev model f = (f◦, ε),

g◦ ∈ R[x] a polynomial approximation of g∗ =
√
f ,

k◦ ∈ R[x] a polynomial approximation of 1/g◦,

we have the following rigorous upper bound on the approximation error:

∥g◦ −
√

f∥∞ ≤ η =
η′

1− µ
,

provided that we have computed µ0, µ1, η′,∆, r◦, µ satisfying:

∥1− k◦g◦∥∞ ≤ µ0 < 1, ∥k◦∥∞ ≤ µ1, ∥k◦(g◦2 − f◦)∥∞ + ε∥k◦∥∞ ≤ 2η′,

∆ := (1− µ0)
2 − 4µ1η

′ ≥ 0, r◦ :=
1− µ0 −

√
∆

2µ1
,

µ := µ0 + µ1r
◦ < 1.

Hence, g = (g◦, η) is a Chebyshev model for g∗ =
√
f .
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Quadrature: an example

Let J =

∫ 3

0
sin

(
1

(10−3 + (1− x)2)3/2

)
dx.
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-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

Chen, '06: 0.7578918118.

WHAT IS THE CORRECT ANSWER?

Using Chebyshev-based RPAs*: 0.749974368527[1, 3].

*N. Brisebarre, M.J., Chebyshev interpolation polynomial-based tools for rigorous computing, ISSAC2010
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Few remarks about basic ODE validation



Rough enclosures of IVP di�erential equations

u′(t) = f(t, u(t)),

u(t0) = u0, u0 ∈ U0, t ∈ [0, T ]

with f ∈ C([0, T ]× R), Lipschitz-continuous in the second variable (uniformly in t):

∃L > 0 s.t |f(t, x)− f(t, y)| ≤ L|x− y| for all (t, x), (t, y) ∈ [0, T ]× R.

Veri�cation condition

If there exist 0 < h ≤ T and Uh ∈ IR, U0 ⊆ Uh s.t.

U0 + [0, h]f([0, h], Uh) ⊂ Uh,

then the IVP has a unique solution uu0 ∈ C1([0, h]) for each u0 ∈ U0.
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Rough enclosures of IVP di�erential equations

Proof sketch:

Integral �xed-point reformulation: T : C([0, h]) → C([0, h])

Tu(t) := u0 +

t∫
0

f(s, u(s))ds, t ∈ [0, h].

u = Tu.

Check Banach �xed point hypotheses:
T is a contraction on C([0, h]) w.r.t. the norm:

∥u∥1 = max
0≤t≤h

e
−Lt|u(t)|;

The set X := {u ∈ C([0, h]) : u([0, h]) ⊆ Uh} is closed and bounded in (C([0, h]), ∥ · ∥1);

If
U0 + [0, h]f([0, h], Uh) ⊂ Uh

then TX ⊆ X for each u0 ∈ U0.

* Both (C([0, h]), ∥ · ∥1) and (C([0, h]), ∥ · ∥∞) are Banach spaces and the norms are equivalent

since: e−Lh∥u∥∞ ≤ ∥u∥1 ≤ ∥u∥∞, for all u ∈ C([0, h])
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Rough enclosures of IVP di�erential equations

*Courtesy of D. Wilczak, http://ww2.ii.uj.edu.pl/~wilczak/capd-tutorial/CAPD_tutorial_part_I.pdf
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A Posteriori Newton-like Validation Methods

⇝ Trajectories for Linearized Impulsive Spacecraft Rendezvous Problem

Lin. Keplerian Motion [Tschauner-Hempel]

z
′′
(ν) + 2x

′
(ν) − 3

1 + e cos ν
z(ν) = 0

x
′′
(ν) − 2z

′
(ν) = 0

y
′′
(ν) + y(ν) = 0

⇒ E�cient spectral methods based on truncated Chebyshev series with a posteriori validation

◦ General LODEs (nonpolynomial coe�cients); Coupled systems of LODEs
*F. Bréhard, N. Brisebarre, and M. J., Validated and numerically e�cient Chebyshev spectral methods for

linear ordinary di�erential equations, ACM TOMS, 2018
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Validated

Computing
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Analysis
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Approx.

Stability
Accuracy

Computer
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Precision

Intervals

Embedded
Com-
puting

Control
Theory

Optimal
ControlAnalysis

Synthesis

Computer-
assisted
Proofs

Dynamical
Systems

Discrete
Maths

Functional
Analysis

Asymptotics

Gen.
Fourier
Series

Operators

Computer
Algebra
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Functions •Chebfun, ApproxFun

Software

•Pseudo-spectral methods

•E�cient linear algebra

•Fix point theorems

•Recurrences for coe�s
•Convergence proofs

•E�cient symbolic structure

•Maple Algolib Package

•Correctly Rounded Libs

•CRLibm
•MPFR, MPFI,

ValidatedNum in Julia

Applications

•Critical Systems

•Aerospace

•CAPA, CAPD, CRM CAMP

•Kepler, Goldbach Conj.
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Outlets for Rigorous Computing

Solve problems with the required accuracy
→ guarantees/proofs about results.

Modern computer di�erential algebra algorithms + approximation in suitable functional
spaces
⇝ obtain e�cient approximations and analytic error bounds
⇝ Theoretical and practical complexity issues for generic classes of problems

CAP for Dynamical Systems

Interaction with Optimization in the framework of Optimal Control
Aerospace Applications

Formal proofs of the above
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Thank you for your attention!


	

