
Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
École Normale Supérieure de Lyon, 2024-2025

-1-

3.2. Interval functions

Definition
(Interval extension.) Let X ∈ IR, and let f : X → R. A
function f̃ : X ∩ IR → IR is called an interval extension of f over X if:

for all x ∈ X, R (f, {x}) = f̃ ([x, x]),
for all Y ⊂ IR with Y ⊂ X, we have

R (f, Y) ⊂ f̃ (Y) .

Several interval extensions are possible for the same function over the
same X. Interval extensions of exp over [−1, 1] include

the function [x, x̄] 7→ [ex, ex̄].
but also?

-25-

3.2. Interval functions

Let’s try to propose a systematic process for computing interval
extensions.

If f (x) is a rational expression, one means to get an interval extension of
the function it denotes is to replace each occurrence of the variable x by
the interval X, and “overload” all arithmetic operations with interval
operations. The resulting extension is called the natural interval
extension.

Theorem
Given a rational expression denoting a real-valued function f , and its
natural interval extension F , which we assume to be well-defined over
some interval X ∈ IR, then

1 Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′) (inclusion isotonicity);
2 R (f,X) ⊂ F (X) (range enclosure).

-26-

3.2. Interval functions

Let’s try to propose a systematic process for computing interval
extensions.

If f (x) is a rational expression, one means to get an interval extension of
the function it denotes is to replace each occurrence of the variable x by
the interval X, and “overload” all arithmetic operations with interval
operations. The resulting extension is called the natural interval
extension.

Theorem
Given a rational expression denoting a real-valued function f , and its
natural interval extension F , which we assume to be well-defined over
some interval X ∈ IR, then

1 Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′) (inclusion isotonicity);
2 R (f,X) ⊂ F (X) (range enclosure).

-26-

3.2. Interval functions

Let’s try to propose a systematic process for computing interval
extensions.

If f (x) is a rational expression, one means to get an interval extension of
the function it denotes is to replace each occurrence of the variable x by
the interval X, and “overload” all arithmetic operations with interval
operations. The resulting extension is called the natural interval
extension.

Theorem
Given a rational expression denoting a real-valued function f , and its
natural interval extension F , which we assume to be well-defined over
some interval X ∈ IR, then

1 Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′) (inclusion isotonicity);
2 R (f,X) ⊂ F (X) (range enclosure).

-26-

3.2. Interval functions

We now would like to extend this notion of natural interval extension to a
larger class of functions.

Definition
We call basic (or standard) functions the elements of

S =
{
sin, cos, exp, tan, log, xp/q, . . .

}
for which we can determine the exact range over a given interval based
on a simple rule.

These functions are said to have a sharp interval enclosure.

Definition
We call elementary function a symbolic expression built from constants
and basic functions using arithmetic operations and composition. The
class of elementary functions will be denoted E . A function f ∈ E is
given by an expression tree (or dag, for directed acyclic graph).

-27-

3.2. Interval functions

We now would like to extend this notion of natural interval extension to a
larger class of functions.

Definition
We call basic (or standard) functions the elements of

S =
{
sin, cos, exp, tan, log, xp/q, . . .

}
for which we can determine the exact range over a given interval based
on a simple rule.

These functions are said to have a sharp interval enclosure.

Definition
We call elementary function a symbolic expression built from constants
and basic functions using arithmetic operations and composition. The
class of elementary functions will be denoted E . A function f ∈ E is
given by an expression tree (or dag, for directed acyclic graph).

-27-

Elementary function: example of a dag

Example: fcomp(x) = exp(sin(x) + cos(x)) over [a, b].

-28-

3.2. Interval functions

Definition
An interval valued function F : X ∩ IR → IR is inclusion isotonic over
X ∈ IR if Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′).

Theorem
Given an elementary function f and an interval X over which the natural
interval extension F of f is well-defined:

1 F is inclusion isotonic over X;
2 R (f,X) ⊂ F (X).

-29-

3.2. Interval functions

Definition
An interval valued function F : X ∩ IR → IR is inclusion isotonic over
X ∈ IR if Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′).

Theorem
Given an elementary function f and an interval X over which the natural
interval extension F of f is well-defined:

1 F is inclusion isotonic over X;
2 R (f,X) ⊂ F (X).

-29-

3.2. Interval functions

Example

Consider
f (x) =

(
cosx− x3 + x

)
(tanx+ 1/2)

over [0, π/4]. To show that f has no zero in this range, we compute the
natural interval extension

f ([0, π/4]) =

[√
2

2
− π3

64
, 1 +

π

4

] [
1

2
,
3

2

]
⊂ [0.11, 2.68] .

Exercise
Show that f (x) = x− sinx+ 2/5 has no zero over [0, π/4].

-30-

3.2. Interval functions

Example

Consider
f (x) =

(
cosx− x3 + x

)
(tanx+ 1/2)

over [0, π/4]. To show that f has no zero in this range, we compute the
natural interval extension

f ([0, π/4]) =

[√
2

2
− π3

64
, 1 +

π

4

] [
1

2
,
3

2

]
⊂ [0.11, 2.68] .

Exercise
Show that f (x) = x− sinx+ 2/5 has no zero over [0, π/4].

-30-

3.2. Interval functions

Theorem
Let X ∈ IR. Let f be an elementary function such that any
subexpression of f is Lipschitz continuous. Let F be an inclusion isotonic
interval extension such that F (X) is well-defined. Then, there exists
κ > 0, depending on F and X, such that, if X =

⋃k
i=1 Xi, with Xi ∈ IR

for all i,then

R (f,X) ⊂
k⋃

i=1

F (Xi) ⊂ F (X)

and

rad

(
k⋃

i=1

F (Xi)

)
⩽ rad (R (f,X)) + κ max

i=1,...,k
radXi.

-31-

3.2. Interval functions

However, the number of subdivisions needed may be very large.

Example

Let f (x) = e1/ cos x, and let p be a degree-10 minimax approximation
of f over [0, 1]. Let

ε (x) = f (x)− p (x) .

Using the natural interval extension of ε, we get ∥ε∥ ⩽ 298. But one can
show that obtaining the actual value ∥ε∥ ≈ 3.8325 · 10−5 by subdivision
would require about 107 subintervals.

-32-

Newton method

Theorem
Let X ∈ IR, let f ∈ C2(X), s.t. f ′(x) ̸= 0 for all x ∈ X and f has a
unique, simple zero x∗ in X. Then if x0 is chosen sufficiently close to x∗,
the sequence (xk)k∈N defined by

xk+1 = xk − f(xk)

f ′(xk)
for k = 0, 1, 2, . . .

converges quadratically fast toward x∗: there exists a constant C such
that

lim
k→+∞

xk = x∗ and |xk+1 − x∗| ⩽ C|xk − x∗|2.

-33-

Interval Newton method

Let X ∈ IR, let f ∈ C1(X).

Let f̃ ′ an interval extension of f ′. We assume 0 /∈ f̃ ′(X).

Start with X0 = X ∈ IR.
Let xk ∈ Xk.

Let

Xk+1 =

(
xk − f(xk)

f̃ ′(Xk)

)
∩Xk.

-34-

Interval Newton method

Let X ∈ IR, let f ∈ C1(X).
Let f̃ ′ an interval extension of f ′. We assume 0 /∈ f̃ ′(X).

Start with X0 = X ∈ IR.
Let xk ∈ Xk.

Let

Xk+1 =

(
xk − f(xk)

f̃ ′(Xk)

)
∩Xk.

-34-

Interval Newton method

Let X ∈ IR, let f ∈ C1(X).
Let f̃ ′ an interval extension of f ′. We assume 0 /∈ f̃ ′(X).

Start with X0 = X ∈ IR.

Let xk ∈ Xk.

Let

Xk+1 =

(
xk − f(xk)

f̃ ′(Xk)

)
∩Xk.

-34-

Interval Newton method

Let X ∈ IR, let f ∈ C1(X).
Let f̃ ′ an interval extension of f ′. We assume 0 /∈ f̃ ′(X).

Start with X0 = X ∈ IR.
Let xk ∈ Xk.

Let

Xk+1 =

(
xk − f(xk)

f̃ ′(Xk)

)
∩Xk.

-34-

Interval Newton method

-35-

Interval Newton method

Start with X0 = X ∈ IR.

Let mk denote the middle of Xk.

Let

Xk+1 =

(
mk − f(mk)

f̃ ′(Xk)

)
∩Xk.

-36-

Interval Newton method

Start with X0 = X ∈ IR.
Let mk denote the middle of Xk.

Let

Xk+1 =

(
mk − f(mk)

f̃ ′(Xk)

)
∩Xk.

-36-

Interval Newton method

We first define the interval Newton operator

N(X) = m− f(m)

f̃ ′(X)
, with m = mid (X).

Now, we start with X0 = X ∈ IR.

Let mk denote the middle of Xk and

Xk+1 = N(Xk) ∩Xk, k = 0, 1, 2,

Theorem
Assume that N(X) is well defined. If X contains a unique, simple zero
x∗, then so do all iterates Xk, k ∈ N. Moreover, the intervals Xk form a
nested sequence converging to [x∗].

-37-

Interval Newton method

We first define the interval Newton operator

N(X) = m− f(m)

f̃ ′(X)
, with m = mid (X).

Now, we start with X0 = X ∈ IR.
Let mk denote the middle of Xk and

Xk+1 = N(Xk) ∩Xk, k = 0, 1, 2,

Theorem
Assume that N(X) is well defined. If X contains a unique, simple zero
x∗, then so do all iterates Xk, k ∈ N. Moreover, the intervals Xk form a
nested sequence converging to [x∗].

-37-

Interval Newton method

Theorem
Brouwer (1910)
Every continuous function f from a convex compact subset K of a
Euclidean space to K itself has a fixed point.

-38-

Interval Newton method

Theorem
Let X ∈ IR, f ∈ C1(X). Let f̃ ′ an interval extension of f ′. We assume
0 /∈ f̃ ′(X).
Let I ∈ IR, x ∈ I ⊂ X, N(I, x) := x− f̃ ′(I)−1f(x)
If N(I) is well defined, then the following statements hold:
(1) if I contains a zero x∗ of f , then so does N(I, x) ∩ I;
(2) if N(I, x) ∩ I = ∅, then I contains no zero of f ;
(3) if N(I, x) ⊆ I, then I contains a unique zero of f .

Proof.

(1) Follows from Mean Value Theorem;
(2) Contra-positive of (1);
(3) Existence from Brouwer’s fixed point theorem; uniqueness from

non-vanishing f̃ ′.

-39-

Interval Newton method

Theorem
Let X ∈ IR, f ∈ C1(X). Let f̃ ′ an interval extension of f ′. We assume
0 /∈ f̃ ′(X).
Let I ∈ IR, x ∈ I ⊂ X, N(I, x) := x− f̃ ′(I)−1f(x)
If N(I) is well defined, then the following statements hold:
(1) if I contains a zero x∗ of f , then so does N(I, x) ∩ I;
(2) if N(I, x) ∩ I = ∅, then I contains no zero of f ;
(3) if N(I, x) ⊆ I, then I contains a unique zero of f .

Proof.

(1) Follows from Mean Value Theorem;
(2) Contra-positive of (1);
(3) Existence from Brouwer’s fixed point theorem; uniqueness from

non-vanishing f̃ ′.

-39-

Interval Newton method

-40-

Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
École Normale Supérieure de Lyon, 2024-2025

-1-

Chapter 4. Rigorous Polynomial Approximations

-2-

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i,

ε(x) = f(x)− p(x) s.t.
∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

-3-

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i, ε(x) = f(x)− p(x)

s.t.
∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

-3-

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i, ε(x) = f(x)− p(x) s.t.

∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

-3-

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i, ε(x) = f(x)− p(x) s.t.

∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

Using IA, ε(x) ∈ [−233, 298], but ∥ε(x)∥∞ ≃ 3.8325 · 10−5

-4-

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i, ε(x) = f(x)− p(x) s.t.

∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

Using IA, ε(x) ∈ [−233, 298], but ∥ε(x)∥∞ ≃ 3.8325 · 10−5

-4-

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i, ε(x) = f(x)− p(x) s.t.

∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

Using IA, ε(x) ∈ [−233, 298], but ∥ε(x)∥∞ ≃ 3.8325 · 10−5

-4-

Why IA does not suffice: Overestimation

Overestimation can be reduced by using intervals of smaller width.

In this case, over [0, 1] we need 107 intervals!

-5-

Rigorous polynomial approximations

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T of degree n

- interval ∆ s. t. f(x)− T (x) ∈∆,∀x ∈ [a, b]

How to compute (T,∆) ?

-6-

Rigorous polynomial approximations

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T of degree n

- interval ∆ s. t. f(x)− T (x) ∈∆,∀x ∈ [a, b]

How to compute (T,∆) ?

-6-

Rigorous polynomial approximations

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T of degree n
- interval ∆ s. t. f(x)− T (x) ∈∆,∀x ∈ [a, b]

How to compute (T,∆) ?

-6-

Rigorous polynomial approximations

f replaced with a rigorous polynomial approximation : (T,∆)
- polynomial approximation T of degree n
- interval ∆ s. t. f(x)− T (x) ∈∆,∀x ∈ [a, b]

How to compute (T,∆) ?

-6-

Chebyshev Models

Over [−1, 1], Chebyshev polynomials: Tn(x) = cos (n arccosx) , n ⩾ 0.

Let I = [a, b], we define Chebyshev polynomials over I as

T [a,b]
n (x) = Tn

(
2x− b− a

b− a

)
.

T
[a,b]
n+1 has n+ 1 distinct extrema in [a, b] (Chebyshev nodes of the first

kind):

ν
[a,b]
k =

a+ b

2
+

b− a

2
cos

(
kπ

n

)
, k = 0, . . . , n.

-7-

Chebyshev Models

Over [−1, 1], Chebyshev polynomials: Tn(x) = cos (n arccosx) , n ⩾ 0.

Let I = [a, b], we define Chebyshev polynomials over I as

T [a,b]
n (x) = Tn

(
2x− b− a

b− a

)
.

T
[a,b]
n+1 has n+ 1 distinct extrema in [a, b] (Chebyshev nodes of the first

kind):

ν
[a,b]
k =

a+ b

2
+

b− a

2
cos

(
kπ

n

)
, k = 0, . . . , n.

-7-

Chebyshev Models

Over [−1, 1], Chebyshev polynomials: Tn(x) = cos (n arccosx) , n ⩾ 0.

Let I = [a, b], we define Chebyshev polynomials over I as

T [a,b]
n (x) = Tn

(
2x− b− a

b− a

)
.

T
[a,b]
n+1 has n+ 1 distinct extrema in [a, b] (Chebyshev nodes of the first

kind):

ν
[a,b]
k =

a+ b

2
+

b− a

2
cos

(
kπ

n

)
, k = 0, . . . , n.

-7-

Chebyshev Models

We recall

Lemma 1

Let Wν(x) =
n∏

k=0

(x− ν
[a,b]
k). We have

Wµ(x) =
(b− a)n+1

22n
(1− x2)U

[a,b]
n−1 (x)

and

max
x∈[a,b]

|Wµ(x)| =
(b− a)n+1

22n
.

-8-

Chebyshev Models

Lemma 2
(Taylor-Lagrange-like formula.) Let n ∈ N, and let f ∈ Cn+1([a, b]). Let
P ∈ Rn[X] be the interpolation polynomial of f at the Chebyshev nodes(
µ
[a,b]
k

)
0⩽k⩽n

. For all x ∈ [a, b], there exists ξx ∈ (a, b) such that

f(x) = P (x) +
(b− a)n+1f (n+1)(ξx)

22n(n+ 1)!
(1− x2)U

[a,b]
n−1 (x) .

-9-

Chebyshev Models - How do we obtain them?

Let n ∈ N, f ∈ Cn+1([a, b]),

f(x) =
n∑

k=0

pkT
[a,b]
k (x)︸ ︷︷ ︸

T (x)

+∆n(x, ξx)︸ ︷︷ ︸
remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x2)U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies

strictly between a and b

How to compute the coefficients pi of T (x) ?
How to compute an interval enclosure ∆ for ∆n(x, ξx) ?

-10-

Chebyshev Models - How do we obtain them?

Let n ∈ N, f ∈ Cn+1([a, b]),

f(x) =

n∑
k=0

pkT
[a,b]
k (x)︸ ︷︷ ︸

T (x)

+∆n(x, ξx)︸ ︷︷ ︸
remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x2)U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies

strictly between a and b

How to compute the coefficients pi of T (x) ?
How to compute an interval enclosure ∆ for ∆n(x, ξx) ?

-10-

Chebyshev Models - How do we obtain them?

Let n ∈ N, f ∈ Cn+1([a, b]),

f(x) =

n∑
k=0

pkT
[a,b]
k (x)︸ ︷︷ ︸

T (x)

+∆n(x, ξx)︸ ︷︷ ︸
remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x2)U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies

strictly between a and b

How to compute the coefficients pi of T (x) ?
How to compute an interval enclosure ∆ for ∆n(x, ξx) ?

-10-

Chebyshev Models: computations of the coefficients

P (x) =
n∑

i=0

piT
[a,b]
i (x), with pi =

n∑
k=0

2
nf
(
ν
[a,b]
k

)
T

[a,b]
i

(
ν
[a,b]
k

)
=

n∑
k=0

2
nf
(
ν
[a,b]
k

)
Ti(νk) =

n∑
k=0

2
nf
(
ν
[a,b]
k

)
Tk(νi).

-11-

Reminder: Clenshaw’s method for evaluating Chebyshev
sums

Algorithm

Input Chebyshev coefficients c0, . . . , cN , a point t
Output

∑N
k=0 ckTk (t)

1 bN+1 ← 0, bN ← cN
2 for k = N − 1, N − 2, . . . , 1

1 bk ← 2tbk+1 − bk+2 + ck

3 return c0 + tb1 − b2

This algorithm runs in O (N) arithmetic operations.

It works also if t and the ck’s are intervals!

-12-

Reminder: Clenshaw’s method for evaluating Chebyshev
sums

Algorithm

Input Chebyshev coefficients c0, . . . , cN , a point t
Output

∑N
k=0 ckTk (t)

1 bN+1 ← 0, bN ← cN
2 for k = N − 1, N − 2, . . . , 1

1 bk ← 2tbk+1 − bk+2 + ck

3 return c0 + tb1 − b2

This algorithm runs in O (N) arithmetic operations.

It works also if t and the ck’s are intervals!

-12-

Chebyshev Models: computations of the coefficients

P (x) =
n∑

i=0

piT
[a,b]
i (x), with pi =

n∑
k=0

2
nf
(
ν
[a,b]
k

)
Tk(νi).

We replace the νk’s and the f(νk)’s with interval enclosures, and then
perform an interval evaluation with Clenshaw’s method: the coefficients
pi are intervals.

-13-

Chebyshev Models: computations of the coefficients

P (x) =
n∑

i=0

piT
[a,b]
i (x), with pi =

n∑
k=0

2
nf
(
ν
[a,b]
k

)
Tk(νi).

We replace the νk’s and the f(νk)’s with interval enclosures, and then
perform an interval evaluation with Clenshaw’s method

: the coefficients
pi are intervals.

-13-

Chebyshev Models: computations of the coefficients

P (x) =
n∑

i=0

piT
[a,b]
i (x), with pi =

n∑
k=0

2
nf
(
ν
[a,b]
k

)
Tk(νi).

We replace the νk’s and the f(νk)’s with interval enclosures, and then
perform an interval evaluation with Clenshaw’s method: the coefficients
pi are intervals.

-13-

Chebyshev Models: bounding the remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x)2U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies strictly

between a and b.

|∆n(x, ξx)| is bounded by
(b−a)n+1|f(n+1)([a,b])|

22n(n+1)! .

If f satisfies a differential equation with polynomial coefficients: fairly
easy to retrieve an upper bound for

∣∣f (n+1)([a, b])
∣∣.

Otherwise?

-14-

Chebyshev Models: bounding the remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x)2U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies strictly

between a and b.

|∆n(x, ξx)| is bounded by
(b−a)n+1|f(n+1)([a,b])|

22n(n+1)! .

If f satisfies a differential equation with polynomial coefficients: fairly
easy to retrieve an upper bound for

∣∣f (n+1)([a, b])
∣∣.

Otherwise?

-14-

Chebyshev Models: bounding the remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x)2U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies strictly

between a and b.

|∆n(x, ξx)| is bounded by
(b−a)n+1|f(n+1)([a,b])|

22n(n+1)! .

If f satisfies a differential equation with polynomial coefficients: fairly
easy to retrieve an upper bound for

∣∣f (n+1)([a, b])
∣∣.

Otherwise?

-14-

Chebyshev Models: bounding the remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x)2U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies strictly

between a and b.

|∆n(x, ξx)| is bounded by
(b−a)n+1|f(n+1)([a,b])|

22n(n+1)! .

If f satisfies a differential equation with polynomial coefficients: fairly
easy to retrieve an upper bound for

∣∣f (n+1)([a, b])
∣∣.

Otherwise?

-14-

Chebyshev Models “Philosophy”

For bounding the remainders:

For “basic functions” use Taylor-Lagrange-like statement.

For “composite functions” use a two-step procedure:
- compute models (T,∆) for all basic functions;
- apply algebraic rules with these models, instead of operations with
the corresponding functions.

-15-

Chebyshev Models - Two-step procedure

Example: fcomp(x) = exp(sin(x) + cos(x))

-16-

Chebyshev Models - Two-step procedure

Example: fcomp(x) = exp(sin(x) + cos(x))

-16-

Chebyshev Models - Two-step procedure

Example: fcomp(x) = exp(sin(x) + cos(x))

-16-

Chebyshev Models - Two-step procedure

Example: fcomp(x) = exp(sin(x) + cos(x))

-16-

Chebyshev Models - Operations: Addition

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Addition
(P1,∆1) + (P2,∆2) = (P1 + P2,∆1 +∆2).

-17-

Chebyshev Models - Operations: Multiplication

For multiplication, we have: T
[a,b]
m (x) · T [a,b]

n (x) =
T

[a,b]
m+n + T

[a,b]
|m−n|

2
.

Consider P (x) =
n∑

i=0

piT
[a,b]
i (x) and Q(x) =

n∑
i=0

qiT
[a,b]
i (x).

We have P (x) ·Q(x) =
2n∑
k=0

ckT
[a,b]
k (x), where

ck =

(∑
|i−j|=k

piqj +
∑

i+j=k

piqj

)
/2.

The cost is O(n2) operations.

-18-

Chebyshev Models - Operations: Multiplication

For multiplication, we have: T
[a,b]
m (x) · T [a,b]

n (x) =
T

[a,b]
m+n + T

[a,b]
|m−n|

2
.

Consider P (x) =
n∑

i=0

piT
[a,b]
i (x) and Q(x) =

n∑
i=0

qiT
[a,b]
i (x).

We have P (x) ·Q(x) =
2n∑
k=0

ckT
[a,b]
k (x), where

ck =

(∑
|i−j|=k

piqj +
∑

i+j=k

piqj

)
/2.

The cost is O(n2) operations.

-18-

Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Multiplication
We need algebraic rule for: (P1,∆1) · (P2,∆2) = (P,∆) s.t.
f1(x) · f2(x)− P (x) ∈∆, ∀x ∈ [a, b]

f1(x) · f2(x) ∈ P1(x) · P2(x)︸ ︷︷ ︸+P2 ·∆1 + P1 ·∆2 +∆1 ·∆2︸ ︷︷ ︸
I2

.

(P1(x) · P2(x))0...n︸ ︷︷ ︸
P (x)

+(P1(x) · P2(x))n+1...2n︸ ︷︷ ︸
I1

∆ = I1 + I2

In our case, for bounding “P s”: Interval Arithmetic evaluation.

-19-

Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Multiplication
We need algebraic rule for: (P1,∆1) · (P2,∆2) = (P,∆) s.t.
f1(x) · f2(x)− P (x) ∈∆, ∀x ∈ [a, b]

f1(x) · f2(x) ∈ P1(x) · P2(x)︸ ︷︷ ︸+P2 ·∆1 + P1 ·∆2 +∆1 ·∆2︸ ︷︷ ︸
I2

.

(P1(x) · P2(x))0...n︸ ︷︷ ︸
P (x)

+(P1(x) · P2(x))n+1...2n︸ ︷︷ ︸
I1

∆ = I1 + I2

In our case, for bounding “P s”: Interval Arithmetic evaluation.

-19-

Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Multiplication
We need algebraic rule for: (P1,∆1) · (P2,∆2) = (P,∆) s.t.
f1(x) · f2(x)− P (x) ∈∆, ∀x ∈ [a, b]

f1(x) · f2(x) ∈ P1(x) · P2(x)︸ ︷︷ ︸+P2 ·∆1 + P1 ·∆2 +∆1 ·∆2︸ ︷︷ ︸
I2

.

(P1(x) · P2(x))0...n︸ ︷︷ ︸
P (x)

+(P1(x) · P2(x))n+1...2n︸ ︷︷ ︸
I1

∆ = I1 + I2

In our case, for bounding “P s”: Interval Arithmetic evaluation.

-19-

Ranges of polynomials

Observe that we heavily used enclosures of ranges of polynomials. This
raises (at least) two questions:

How do we compute these enclosures?
why would this process yield tight enclosures?

-20-

Ranges of polynomials

Observe that we heavily used enclosures of ranges of polynomials. This
raises (at least) two questions:

How do we compute these enclosures?
why would this process yield tight enclosures?

-20-

Ranges of polynomials - How do we compute these
enclosures?

A first option: let p(x) = a0 + a1T
[a,b]
1 (x) + · · ·+ anT

[a,b]
n (x), as,

p(I) is bounded by p(x) = |a0|+ |a1|+ · · ·+ |an|.

Another possibility is to use Bernstein’s basis: indeed, one can show
that if

p(x) =
n∑

k=0

pkBn,k(x),

then for all x ∈ [0, 1], we have

min
[0,1]

p ⩾ min
k

pk and max
[0,1]

p ⩽ max
k

pk.

Warning: need for a conversion algorithm (cost in O(M(n))).
Problems of stability.
Tighter methods based on Descartes’ rule of signs, Sturm’s theorem,
sums of squares (Hilbert’s 17th problem), companion matrices, etc.

-21-

Ranges of polynomials - How do we compute these
enclosures?

A first option: let p(x) = a0 + a1T
[a,b]
1 (x) + · · ·+ anT

[a,b]
n (x), as,

p(I) is bounded by p(x) = |a0|+ |a1|+ · · ·+ |an|.
Another possibility is to use Bernstein’s basis: indeed, one can show
that if

p(x) =

n∑
k=0

pkBn,k(x),

then for all x ∈ [0, 1], we have

min
[0,1]

p ⩾ min
k

pk and max
[0,1]

p ⩽ max
k

pk.

Warning: need for a conversion algorithm (cost in O(M(n))).
Problems of stability.
Tighter methods based on Descartes’ rule of signs, Sturm’s theorem,
sums of squares (Hilbert’s 17th problem), companion matrices, etc.

-21-

Ranges of polynomials - How do we compute these
enclosures?

A first option: let p(x) = a0 + a1T
[a,b]
1 (x) + · · ·+ anT

[a,b]
n (x), as,

p(I) is bounded by p(x) = |a0|+ |a1|+ · · ·+ |an|.
Another possibility is to use Bernstein’s basis: indeed, one can show
that if

p(x) =

n∑
k=0

pkBn,k(x),

then for all x ∈ [0, 1], we have

min
[0,1]

p ⩾ min
k

pk and max
[0,1]

p ⩽ max
k

pk.

Warning: need for a conversion algorithm (cost in O(M(n))).
Problems of stability.

Tighter methods based on Descartes’ rule of signs, Sturm’s theorem,
sums of squares (Hilbert’s 17th problem), companion matrices, etc.

-21-

Ranges of polynomials - How do we compute these
enclosures?

A first option: let p(x) = a0 + a1T
[a,b]
1 (x) + · · ·+ anT

[a,b]
n (x), as,

p(I) is bounded by p(x) = |a0|+ |a1|+ · · ·+ |an|.
Another possibility is to use Bernstein’s basis: indeed, one can show
that if

p(x) =

n∑
k=0

pkBn,k(x),

then for all x ∈ [0, 1], we have

min
[0,1]

p ⩾ min
k

pk and max
[0,1]

p ⩽ max
k

pk.

Warning: need for a conversion algorithm (cost in O(M(n))).
Problems of stability.
Tighter methods based on Descartes’ rule of signs, Sturm’s theorem,
sums of squares (Hilbert’s 17th problem), companion matrices, etc.

-21-

Ranges of polynomials

Second, why would this process yield tight enclosures? Our basic
functions are analytic, and hence the coefficients of Chebyshev
interpolants (quickly) converge to 0.

-22-

Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 +∆2 ⊆ [c, d]

f1() ∈ P1() +∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw’s algorithm

-23-

Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 +∆2 ⊆ [c, d]

f1() ∈ P1() +∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw’s algorithm

-23-

Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 +∆2 ⊆ [c, d]

f1(y) ∈ P1(y) +∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw’s algorithm

-23-

Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 +∆2 ⊆ [c, d]

f1(f2(x)) ∈ P1(f2(x)) +∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw’s algorithm

-23-

Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 +∆2 ⊆ [c, d]

f1(f2(x)) ∈ P1(P2(x) +∆2) +∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw’s algorithm

-23-

Chebyshev Models: using truncated Chebyshev series

P (x) =
n∑

k=0

′akTk(x), where ak =
2

π

1∫
−1

f(x)Tk(x)√
1− x2

dx.

Computation of the coefficients (for “basic” D-finite functions1)

Truncation Error: Bernstein-like formula (for “basic” D-finite functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

1solutions of Linear Differential Equations with polynomial coefficients
-24-

Chebyshev Models: using truncated Chebyshev series

P (x) =
n∑

k=0

′akTk(x), where ak =
2

π

1∫
−1

f(x)Tk(x)√
1− x2

dx.

Computation of the coefficients (for “basic” D-finite functions1)

- recurrence formulae2 for computing ak

Truncation Error: Bernstein-like formula (for “basic” D-finite functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

1solutions of Linear Differential Equations with polynomial coefficients
2A. Benoit and B. Salvy, Chebyshev Expansions for Solutions of Linear Differential Equations, ISSAC ’09:

Proceedings of the twenty-second international symposium on Symbolic and algebraic computation, 23-30, ISSAC
’09. ACM, New York, NY, 23-30

-24-

Chebyshev Models: using truncated Chebyshev series

P (x) =
n∑

k=0

′akTk(x), where ak =
2

π

1∫
−1

f(x)Tk(x)√
1− x2

dx.

Computation of the coefficients (for “basic” D-finite functions1)

- recurrence formulae2 for computing ak

Truncation Error: Bernstein-like formula (for “basic” D-finite functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

1solutions of Linear Differential Equations with polynomial coefficients
2A. Benoit and B. Salvy, Chebyshev Expansions for Solutions of Linear Differential Equations, ISSAC ’09:

Proceedings of the twenty-second international symposium on Symbolic and algebraic computation, 23-30, ISSAC
’09. ACM, New York, NY, 23-30

-24-

Chebyshev Models: using truncated Chebyshev series

P (x) =
n∑

k=0

′akTk(x), where ak =
2

π

1∫
−1

f(x)Tk(x)√
1− x2

dx.

Computation of the coefficients (for “basic” D-finite functions1)

Truncation Error: Bernstein-like formula (for “basic” D-finite functions)

∃ξ ∈ [−1, 1] s.t. ∥f − P∥∞ =

∣∣f (n+1)(ξ)
∣∣

2n(n+ 1)!
.

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

1solutions of Linear Differential Equations with polynomial coefficients
-24-

Chebyshev Models: using truncated Chebyshev series

P (x) =
n∑

k=0

′akTk(x), where ak =
2

π

1∫
−1

f(x)Tk(x)√
1− x2

dx.

Computation of the coefficients (for “basic” D-finite functions1)

Truncation Error: Bernstein-like formula (for “basic” D-finite functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

1solutions of Linear Differential Equations with polynomial coefficients
-24-

