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Section 2.2. A little bit of quadrature: Gauss methods

There exists a unique choice of the points xj, and the weights wy, such
that, whenever f € Ro,11]x],

| @@ =Y ws(o).
@ k=0

These points xy, belong to (a,b) and are the roots of the (n + 1)-th
orthogonal polynomial associated to w.
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Section 2.2. A little bit of quadrature: Clenshaw-Curtis
quadrature

The Chebyshev polynomials of the first kind satisfy

1 2
—=, ke2N
Ti(z)de = 1=K ’
/; k() {0, k ¢ 2N.

Ifp=>4_ockTk, we deduce that the integral with weight w =1 is

given by
! 2cg
/ p(z)dz = Z T2
- 0<k<n
ke

2N

14



Section 2.3. Lebesgue constants

For simplicity, we assume [a,b] = [—1, 1].

We say that a linear mapping L : C([—1,1]) — R,,[z] is a projection onto
R, [z] if Lp = p for all p € R, [z]. The operator norm

Lf|l
A LSl
fee(=11]) I1flloo

is called the Lebesgue constant for the projection.
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Section 2.3. Lebesgue constants

For simplicity, we assume [a,b] = [—1, 1].

Definition 9

We say that a linear mapping L : C([—1,1]) — R,,[z] is a projection onto
R, [z] if Lp = p for all p € R, [z]. The operator norm

Lf|l
Ae  sup NS
reci=1,1) IIflleo

is called the Lebesgue constant for the projection.

Proposition

Let A be the Lebesgue constant for the linear projection L of C([—1, 1])
onto R, [z]. Let f € C([-1,1]) and let p = Lf. Let p* denote the
minimax approximation to f. Then, we have

[f = Plloo <A+ A)|f =P lco-

1B



2.3.1. Lebesgue constants for polynomial interpolation

Let zg,...,x, be pairwise distinct points in [—1,1]. Consider the
Lagrange interpolation operator

k=0
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2.3.1. Lebesgue constants for polynomial interpolation

Let zg,...,x, be pairwise distinct points in [—1,1]. Consider the
Lagrange interpolation operator

Ln C([flvl})%Rn[x]v Zf xk gk
k=0
Theorem 10
The Lebesgue constant of degree-n Lagrange interpolation at xq, ..., x,
is equal to

¢
mmax kZ:O |0()
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2.3.1. Lebesgue constants for polynomial interpolation

Theorem 11
The Lebesgue constant A,, satisfies

2 4 2 4
- <log(n + 1)+ +log ) < A, where — (fy + log ) = 0.52125. ..
T T T 7

Additionally,

o for Chebyshev nodes (of the first and the second kinds), we have the
bound

2 2
A, < =log(n+1)+1 and A, ~ =logn as n — +oc;
T T

o for equispaced points,

n—2 n+1

A, >
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2.3.1. Lebesgue constants for polynomial interpolation

We deduce from this theorem that Chebyshev interpolants (i.e.
interpolation polynomials at Chebyshev nodes) are "near-best"
approximations:

@ A5 =2.76...: one loses at most 2 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial;

@ A3g = 3.18...: one loses at most 2 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial;

@ Ajgp = 3.93...: one loses at most 2 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial;

@ Aigoooo = 8.32...: one loses at most 4 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial.
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2.3.2. Lebesgue constants for Lo best approximation

When the L space under consideration is Lo ([ 1,1], \/7> the best

polynomial approximation ps ,, is called the truncated Chebyshev series of
order n.

Theorem 12
The Lebesgue constant for the Lo ([ 1,1], \/7) projection onto

R, [x] is
1 ™
A= %/_

4 4
A, < —log(n+1)+3 and A, ~ — logn as n — +o0.
s T

sin((n 4+ 1/2)t)
sin(t/2)

.

We have
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2.3.2. Lebesgue constants for Lo best approximation

We deduce from this theorem that truncated Chebyshev series are
"near-best" approximations:

@ A5 =4.12...: one loses at most 3 bits if one uses the truncated
Chebyshev series instead of the minimax polynomial;

@ A3g =4.39...: one loses at most 3 bits if one uses the truncated
Chebyshev series instead of the minimax polynomial;

@ Ajgp = 4.87...: one loses at most 3 bits if one uses the truncated
Chebyshev series instead of the minimax polynomial;

@ Aqgoo00 = 7.66...: one loses at most 3 bits if one uses the
truncated Chebyshev series instead of the minimax polynomial.
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2.3.3. Corollary: A first statement on the convergence of
Chebyshev interpolants and truncated Chebyshev series

Let f € C([a,b]). The modulus of continuity of f is the function w
defined as

for all § > 0, w(d) = sup |f(z) — f(y)l-

‘.T—y| <57
z,y € [a, 0]

1.



2.3.3. Corollary: A first statement on the convergence of
Chebyshev interpolants and truncated Chebyshev series

Let f € C([a,b]). The modulus of continuity of f is the function w

defined as
for all § > 0, w(0) = sup |f(z) — f(y)l-
|z —y| < 0,
z,y € [a, 0]

Proposition

If f is a continuous function over [0, 1], w its modulus of continuity, then
we have

1 = Ba(f, Moo = S0 (n7)

1.



2.3.3. Corollary: A first statement on the convergence of
Chebyshev interpolants and truncated Chebyshev series

Theorem 13

If f is Lipschitz continuous over [a,b], then

@ the sequence of interpolation polynomials at the Chebyshev nodes
uniformly converges to f.

@ The truncated Chebyshev series of f uniformly converges to f.
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Section 2.4.2. Convergence

The Chebyshev expansion of f is the Fourier expansion of f(cost), so
that many results on the convergence of Chebyshev expansions can be
deduced from corresponding results in the well-developed theory of
Fourier series.

o3



Section 2.4.2. Convergence

Theorem 14

Let f be continuous on [—1,1]. Denote by (ay) its sequence of
Chebyshev coefficients, by (f,) its sequence of truncated Chebyshev
expansions and by (p,)nen the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

@ The coefficients ay, tend to 0 when k — co.
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Section 2.4.2. Convergence

Theorem 14

Let f be continuous on [—1,1]. Denote by (ay) its sequence of
Chebyshev coefficients, by (f,) its sequence of truncated Chebyshev
expansions and by (p,)nen the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

@ The coefficients ay, tend to 0 when k — co.

@ If f is Lipschitz continuous on [—1,1], then (f,) converges
absolutely and uniformly to f and (p,) converges uniformly to f.
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Section 2.4.2. Convergence

Theorem 14

Let f be continuous on [—1,1]. Denote by (ay) its sequence of
Chebyshev coefficients, by (f,) its sequence of truncated Chebyshev
expansions and by (p,)nen the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

@ The coefficients ay, tend to 0 when k — co.

@ If f is Lipschitz continuous on [—1,1], then (f,) converges
absolutely and uniformly to f and (p,) converges uniformly to f.
© If f isC™ and f™) is Lipschitz continuous, then aj, = O(1/k™*1),

|f = falloo = O(n™™) and || f — pnllec = O(n™™).
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Section 2.4.2. Convergence

Theorem 14

Let f be continuous on [—1,1]. Denote by (ay) its sequence of
Chebyshev coefficients, by (f,) its sequence of truncated Chebyshev
expansions and by (p,)nen the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

@ The coefficients ay, tend to 0 when k — co.

@ If f is Lipschitz continuous on [—1,1], then (f,) converges
absolutely and uniformly to f and (p,) converges uniformly to f.

© If f isC™ and f™) is Lipschitz continuous, then aj, = O(1/k™*1),
|f = falloo = O(n™™) and || f — pnllec = O(n™™).

@ If f is analytic inside the ellipse |z + \/,227—1| <r withr > 1, then
ak = O(rik)r [ = falloo =0@™") and || f — pulloc = O(r™").
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Section 2.4.2. Convergence

Theorem 15

Let f be continuous on [—1,1]. Denote by (f,) its sequence of truncated

Chebyshev expansions and by (p,,)nen the sequence of interpolation
polynomials of f at the Chebyshev nodes. Then

@ Let P! denote the minimax polynomial of degree at most n of f. If
f eCnt([—1,1]), there exists &1, &2,&3 € (—1,1) such that

N AR (1
_F(&)]

)]

I = pulle = e
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Chapter 4. Interval Arithmetic, Interval Analysis



Floating Point (FP) Arithmetic

Given
a radix B =2,
a precision p=>1,
a set of exponents  F i\, -, Emax.

A finite FP number z is represented by 2 integers:
e integer mantissa : M, P L < |[M| < pP —1;
@ exponent F, F i, < F < Fmax

such that
M

g

x BF.

€Tr =

We assume binary FP arithmetic (that is to say 8 = 2.)
We denote F,, the corresponding set of FP numbers.
Multiple-precision FP arithmetic: we let p and E vary.



|[EEE Precisions

See http://en.wikipedia.org/wiki/IEEE_floating_point

precision | minimal exponent | maximal exponent
single (binary 32) 24 —126 127
double (binary 64) 53 —1022 1023
extended double 64 —16382 16383
quadruple (binary 128) 113 —16382 16383



http://en.wikipedia.org/wiki/IEEE_floating_point

IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to F,
may not belong to F, (in general it does not): the result must be
rounded.
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rounded.
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elements of F,, o, () is the one for which the integral significand j
is an even number.



IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to F,
may not belong to F, (in general it does not): the result must be
rounded.

IEEE standard defines 4 different rounding modes:

e rounding towards +o0, or upwards: o,(z) = min{y € F, : y > z};
@ rounding towards —oo, or downwards:
og(xz) = max{y € F, : y < z};
@ rounding towards 0: o, (z) := o, () if x < 0, and to o4(x)
otherwise;

e rounding to the nearest even: o,(z) is the element of F, that is
closest to z. If x is exactly halfway between two consecutive
elements of F,, o, () is the one for which the integral significand j
is an even number.

The first three rounding modes are called directed rounding modes.
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that allows for such reasoning.
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Chapter 4. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

Interval Arithmetic is “an arithmetic for inequalities”.
Assume for instance that we know that 5 < a < 6 and 10 < b < 11: then
of course 50 < ab < 66. We will define a product of real intervals such
that

[5, 6] x [10,11] = [50, 66]

that allows for such reasoning.
In double precision, compute z 1 = (z1)? where zg =1 — 10719,

Another need for interval arithmetic comes from the roundoff errors that
occur when working with finite precision numbers.



Chapter 4. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

Notable applications of interval arithmetic to bring rigor to numerical
computations performed on a computer include:
e T. Hales' proof of Kepler's conjecture (see
https://code.google.com/p/flyspeck/),
@ W. Tucker’s solution of Smale's 14th problem (see
https://www2.math.uu.se/ warwick/main/thesis.html and
also https://paulbourke.net/fractals/lorenz/).

Numerous additional interesting information on the website
https://www.cs.utep.edu/interval-comp/.


https://code.google.com/p/flyspeck/
https://www2.math.uu.se/~warwick/main/thesis.html
https://paulbourke.net/fractals/lorenz/
https://www.cs.utep.edu/interval-comp/
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Chapter 4. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

In this course, we are interested in the use of interval arithmetic for
mathematical function evaluation purpose.
Given € > 0 and f : [a,b] — R, we would like to make sure that the

evaluation f (x) of f at any value x € [a, b] is such that

[f(z) = f(@)] <e

1@

Note that, in practice, one commonly uses relative error @) rather

than absolute error \f/(-x\) —f(@)]

We focus on the absolute error case for the sake of clarity.



Chapter 4. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

To perform the evaluation, we replace f by a polynomial p. Then we
evaluate p, and f (x) = o (p(x)), where o is the active rounding mode.
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evaluate p, and f (x) = o (p(x)), where o is the active rounding mode.

There are two sources of error:
@ approximation error: let n; be an upper bound for ||f —p|| .,

@ rounding error. let o be an upper bound for the error
lp(z) — o (p ()],

we have to guarantee that n; + 12 < €.
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Chapter 4. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

To perform the evaluation, we replace f by a polynomial p. Then we
evaluate p, and f (x) = o (p(x)), where o is the active rounding mode.

There are two sources of error:
@ approximation error: let n; be an upper bound for ||f —p|| .,

@ rounding error. let o be an upper bound for the error
lp(z) — o (p ()],

we have to guarantee that n; + 12 < €.
In this course: tools that help to establish rigorous approximation error.
Regarding rounding errors, G.Melquiond has developed formal proof tools

(in Coq) which address this issue (see
https://gappa.gitlabpages.inria.fr/).


https://gappa.gitlabpages.inria.fr/

4.1. Interval arithmetic

Definition

(Real interval.) Let T,z € R, T < x. We define the interval

X=[zz|={recR:z2<z<z}.

The real numbers x and T are called the endpoints of the interval, x is its
minimum, T its maximum. The set of all real intervals will be denoted IR.

-10-



4.1. Interval arithmetic

Definition
(Real interval.) Let T,z € R, T < x. We define the interval

X=[zz|={recR:z2<z<z}.

The real numbers x and T are called the endpoints of the interval, x is its
minimum, T its maximum. The set of all real intervals will be denoted IR.

Definition
Let x € IR. The width of x is denoted w (x) = & — x. We also define the
center

and the radius rad (z) = w (z).
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4.1. Interval arithmetic

It is common in the litterature to encounter the notation
(mid (x) ,rad (z)) = {x € R : |z — mid (z)| < rad (x)}.

This mid-rad representation is the basis of the so called Ball Arithmetic,
cf. the excellent software Arb https://arblib.org/.

11-
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4.1. Interval arithmetic

Remark

It is common in the litterature to encounter the notation
(mid (x) ,rad (z)) = {x € R : |z — mid (z)| < rad (x)}.

This mid-rad representation is the basis of the so called Ball Arithmetic,
cf. the excellent software Arb https://arblib.org/.

Definition

A point (or degenerate, or thin) interval is one of the form [z, ], also
denoted [z].
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4.1.1. Operations on intervals

We now define basic arithmetic operations on intervals. As you will see,
monotonicity plays an essential role for obtaining sharp enclosures.

Definition

Let X,Y € IR. Let x € {+,—, X, /}. We denote

X*xY ={zxyze X,yeY}

where, if x = /, we assume that 0 € Y.

1o.



4.1.1. Operations on intervals

We can compute the X xY above using formulae such as

which depend only on the endpoints.

Exercise. O
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4.1.1. Operations on intervals

Note that, in IR, the operations + and x are associative and
commutative.

Remark

In practice, multiplication (hence division) can be made more efficient
(check the signs of the endpoints).

14



4.1.1. Operations on intervals

@ Interval subtraction is not the inverse of addition.
@ Interval division is not the inverse of multiplication.

© Interval multiplication of an interval with itself is not equivalent to
“squaring the interval”: if z < 0 < Z,

[x,Z] X [z,T] # [O,max (gQ,fz)} .

@ Interval multiplication is sub-distributive wrt addition: for all
X,Y,Z € IR, we have

Xx(Y+2Z)CXXxY+XxZ

@ For all X € IR, we have X + [0] = X and [0] x X = [0].

Exercise. O




4.1.1. Operations on intervals

A straightforward yet quite useful statement is the following.

Lemma

(Inclusion isotonicity) If X C X'\ Y C Y',x € {+,—, X, /}, then

X+xYcCcX' xY'.

For division, we assume that 0 ¢ Y.

Obvious from Definition . O

16—



4.1.2. Floating-point interval arithmetic

When it comes to implementing interval arithmetic on a computer, we no
longer work over R, but in most cases with floating-point numbers.
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4.1.2. Floating-point interval arithmetic

When it comes to implementing interval arithmetic on a computer, we no
longer work over R, but in most cases with floating-point numbers.

Let F be the set of machine numbers we are working with. Then we

denote
IF ={lz,7] -2,z € F}.

Of course the set of floating-point numbers is not arithmetically closed
(e.g., the sum of two floating-point numbers is not always a
floating-point number).

When we perform arithmetic operations on intervals in IF, we need to
make sure to “round the resulting interval outwards” in order to
guarantee that it contains the “true result”.
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4.1.2. Floating-point interval arithmetic

For X,Y € IF, we set

X+Y=[V(z+y).a@+7)],
X-Y=[Vz-7),@@-y)].
XxY = [min (v (zy),V (@7),V (zy),V (@7)),
max (4 (z-y), & (z-9) , & (Ty) , & (27))]
X/Y = [min (V (z/y),V (z/9),v (z/y) vV (2/9))
max (A (z/y) , 6 (z/y), 0 (2/y), 6 (2/9))] if0¢Y,

where V and A denote rounding to —oo and +oo respectively.



4.1.2. Floating-point interval arithmetic

Standard machine floating-point numbers are not always sufficient, e.g.,
to work with very small intervals. We may also use multiple-precision
floating-point numbers as bounds for our intervals. An example of a

library which offers support for multiple precision interval arithmetic is
MPFR!.

lhttp://www.mpfr.org

-10-
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4.2. Interval functions

Let D C R, and let f : D — R. We denote
R(f,D)={f(x):z € D}

the range of f over D.
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4.2. Interval functions

Let D C R, and let f : D — R. We denote
R(f,D)={f(x):z € D}

the range of f over D.

Remark

Finding the exact image of a (usually multivariate) function, and, in
particular, a value where [ attains its minimum is a whole subdomain of
Math and CS called Global Optimization.

-20-



4.2. Interval functions

Let X = [z,Z] € IR. By monotonicity, interval functions defined as
follows give the exact range of the corresponding real functions:

e* =lexpz,expi],
\/Y = [\/Eaﬁ} ) £>Oa
log X =[logz,log z], x>0,

arctan X = [arctan z, arctan 7],

1.



4.2. Interval functions

For some other functions like 2", trigonometric functions..., writing down
R (f, D) is also possible, as long as we know their extrema. For instance,
let n € Z, X € IR,

ifn € 2N 41, [2", z"]
ifn € N\ {0}, neven,
[min (", z") ,max (2", 2")]if 0 ¢ X,
[0, max (z™, Z")] otherwise,
[1,1]if n = 0,
[1/%,1/2] "if —n € Nand 0 ¢ X.

X" =pow (X,n) =

99



4.2. Interval functions

Exercise

Write the analogous formulas for sin, cos, tan. For sin and tan, consider
St = {2k7r+g,k; ez}, Sp= {ka— gk ez}.
For cos, consider

S ={2kn,keZ}, Sy ={2kn+mkecZ}.

o3



4.2. Interval functions

The example of f (z) = 22 — x + 1 over [0, 2] illustrates two important
issues:

@ overestimation;

@ dependency on the way the function is written.
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4.2. Interval functions

The example of f (z) = 22 — x + 1 over [0, 2] illustrates two important
issues:

@ overestimation;

@ dependency on the way the function is written.

We have f (z) € [0,2]* —[0,2] + [1] = [0,4] 4 [-2,0] + [1] = [-1,5].
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4.2.

Interval functions

2

The example of f (z) = 2* — 2 + 1 over [0, 2] illustrates two important

issues:
@ overestimation;

@ dependency on the way the function is written.

We have f (z) € [0,2]* —[0,2] + [1] = [0,4] 4 [-2,0] + [1] = [-1,5].

Now write f (z) =z (z — 1) 4+ 1. We have
f2) €0, 2][-1A] + [1] = [=2,2] + [1,1] = [-1,3].
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4.2.

Interval functions

2

The example of f (z) = 2* — 2 + 1 over [0, 2] illustrates two important

issues:
@ overestimation;

@ dependency on the way the function is written.

We have f (z) € [0,2]* —[0,2] + [1] = [0,4] 4 [-2,0] + [1] = [-1,5].

Now write f (z) =z (z — 1) 4+ 1. We have
f2) €0, 2][-1A] + [1] = [=2,2] + [1,1] = [-1,3].

Actually, R (f,[0,2]) = [3/4, 3].

24



4.2. Interval functions

(Interval extension.) Let X € IR, and let f: X — R. A
function f : X NIR — IR is called an interval extension of f over X if:

o forallz € X, R(f,{z}) = [ ([z,x]),
o forallY CIR withY C X, we have

R(f,Y)C f(Y).

Several interval extensions are possible for the same function over the
same X. Interval extensions of exp over [—1,1] include

o the function [z, Z] — [eZ, e*].
@ but also?

O



4.2. Interval functions

Let's try to propose a systematic process for computing interval
extensions.
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4.2. Interval functions

Let's try to propose a systematic process for computing interval
extensions.

If f(z) is a rational expression, one means to get an interval extension of
the function it denotes is to replace each occurrence of the variable x by
the interval X, and “overload” all arithmetic operations with interval
operations. The resulting extension is called the natural interval
extension.
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4.2. Interval functions

Let's try to propose a systematic process for computing interval
extensions.

If f(z) is a rational expression, one means to get an interval extension of
the function it denotes is to replace each occurrence of the variable x by
the interval X, and “overload” all arithmetic operations with interval
operations. The resulting extension is called the natural interval
extension.

Theorem

Given a rational expression denoting a real-valued function f, and its
natural interval extension F', which we assume to be well-defined over
some interval X € IR, then

@ Z CZ' C X implies F(Z) C F (Z') (inclusion isotonicity);
@ R(f,X)C F(X) (range enclosure).
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4.2. Interval functions

We now would like to extend this notion of natural interval extension to a
larger class of functions.

Definition

We call basic (or standard) functions the elements of
G = {sin7 cos, exp, tan, log, 27/, . . }

for which we can determine the exact range over a given interval based
on a simple rule.

These functions are said to have a sharp interval enclosure.
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4.2. Interval functions

We now would like to extend this notion of natural interval extension to a
larger class of functions.

Definition

We call basic (or standard) functions the elements of
G = {sin7 cos, exp, tan, log, 27/, . . }

for which we can determine the exact range over a given interval based
on a simple rule.

These functions are said to have a sharp interval enclosure.

Definition

We call elementary function a symbolic expression built from constants
and basic functions using arithmetic operations and composition. The
class of elementary functions will be denoted €. A function f € £ is
given by an expression tree (or dag, for directed acyclic graph).
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4.2. Interval functions

An interval valued function F : X NIR — IR is inclusion isotonic over
XelR ifZCZ C X implies F(Z) C F(Z').
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4.2. Interval functions

An interval valued function F : X NIR — IR is inclusion isotonic over
XelR ifZCZ C X implies F(Z) C F(Z').

Theorem

Given an elementary function f and an interval X over which the natural
interval extension F' of f is well-defined:

@ F is inclusion isotonic over X ;
@ R(f,X)CF(X).
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