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3.2. Interval functions

Definition
(Interval extension.) Let X ∈ IR, and let f : X → R. A
function f̃ : X ∩ IR → IR is called an interval extension of f over X if:

for all x ∈ X, R (f, {x}) = f̃ ([x, x]),
for all Y ⊂ IR with Y ⊂ X, we have

R (f, Y ) ⊂ f̃ (Y ) .

Several interval extensions are possible for the same function over the
same X. Interval extensions of exp over [−1, 1] include

the function [x, x̄] 7→ [ex, ex̄].
but also?
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3.2. Interval functions

Let’s try to propose a systematic process for computing interval
extensions.

If f (x) is a rational expression, one means to get an interval extension of
the function it denotes is to replace each occurrence of the variable x by
the interval X, and “overload” all arithmetic operations with interval
operations. The resulting extension is called the natural interval
extension.

Theorem
Given a rational expression denoting a real-valued function f , and its
natural interval extension F , which we assume to be well-defined over
some interval X ∈ IR, then

1 Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′) (inclusion isotonicity);
2 R (f,X) ⊂ F (X) (range enclosure).
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3.2. Interval functions

We now would like to extend this notion of natural interval extension to a
larger class of functions.

Definition
We call basic (or standard) functions the elements of

S =
{
sin, cos, exp, tan, log, xp/q, . . .

}
for which we can determine the exact range over a given interval based
on a simple rule.

These functions are said to have a sharp interval enclosure.

Definition
We call elementary function a symbolic expression built from constants
and basic functions using arithmetic operations and composition. The
class of elementary functions will be denoted E . A function f ∈ E is
given by an expression tree (or dag, for directed acyclic graph).
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Elementary function: example of a dag

Example: fcomp(x) = exp(sin(x) + cos(x)) over [a, b].
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3.2. Interval functions

Definition
An interval valued function F : X ∩ IR → IR is inclusion isotonic over
X ∈ IR if Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′).

Theorem
Given an elementary function f and an interval X over which the natural
interval extension F of f is well-defined:

1 F is inclusion isotonic over X;
2 R (f,X) ⊂ F (X).

-29-



3.2. Interval functions

Definition
An interval valued function F : X ∩ IR → IR is inclusion isotonic over
X ∈ IR if Z ⊂ Z ′ ⊂ X implies F (Z) ⊂ F (Z ′).

Theorem
Given an elementary function f and an interval X over which the natural
interval extension F of f is well-defined:

1 F is inclusion isotonic over X;
2 R (f,X) ⊂ F (X).

-29-



3.2. Interval functions

Example

Consider
f (x) =

(
cosx− x3 + x

)
(tanx+ 1/2)

over [0, π/4]. To show that f has no zero in this range, we compute the
natural interval extension

f ([0, π/4]) =

[√
2

2
− π3

64
, 1 +

π

4

] [
1

2
,
3

2

]
⊂ [0.11, 2.68] .

Exercise
Show that f (x) = x− sinx+ 2/5 has no zero over [0, π/4].
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3.2. Interval functions

Theorem
Let X ∈ IR. Let f be an elementary function such that any
subexpression of f is Lipschitz continuous. Let F be an inclusion isotonic
interval extension such that F (X) is well-defined. Then, there exists
κ > 0, depending on F and X, such that, if X =

⋃k
i=1 Xi, with Xi ∈ IR

for all i,then

R (f,X) ⊂
k⋃

i=1

F (Xi) ⊂ F (X)

and

rad

(
k⋃

i=1

F (Xi)

)
⩽ rad (R (f,X)) + κ max

i=1,...,k
radXi.
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3.2. Interval functions

However, the number of subdivisions needed may be very large.

Example

Let f (x) = e1/ cos x, and let p be a degree-10 minimax approximation
of f over [0, 1]. Let

ε (x) = f (x)− p (x) .

Using the natural interval extension of ε, we get ∥ε∥ ⩽ 298. But one can
show that obtaining the actual value ∥ε∥ ≈ 3.8325 · 10−5 by subdivision
would require about 107 subintervals.
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Newton method

Theorem
Let X ∈ IR, let f ∈ C2(X), s.t. f ′(x) ̸= 0 for all x ∈ X and f has a
unique, simple zero x∗ in X. Then if x0 is chosen sufficiently close to x∗,
the sequence (xk)k∈N defined by

xk+1 = xk − f(xk)

f ′(xk)
for k = 0, 1, 2, . . .

converges quadratically fast toward x∗: there exists a constant C such
that

lim
k→+∞

xk = x∗ and |xk+1 − x∗| ⩽ C|xk − x∗|2.
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Interval Newton method

Let X ∈ IR, let f ∈ C1(X).

Let f̃ ′ an interval extension of f ′. We assume 0 /∈ f̃ ′(X).

Start with X0 = X ∈ IR.
Let xk ∈ Xk.

Let

Xk+1 =

(
xk − f(xk)

f̃ ′(Xk)

)
∩Xk.
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Interval Newton method
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Interval Newton method

Start with X0 = X ∈ IR.

Let mk denote the middle of Xk.

Let

Xk+1 =

(
mk − f(mk)

f̃ ′(Xk)

)
∩Xk.
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Interval Newton method

We first define the interval Newton operator

N(X) = m− f(m)

f̃ ′(X)
, with m = mid (X).

Now, we start with X0 = X ∈ IR.

Let mk denote the middle of Xk and

Xk+1 = N(Xk) ∩Xk, k = 0, 1, 2, . . . .

Theorem
Assume that N(X) is well defined. If X contains a unique, simple zero
x∗, then so do all iterates Xk, k ∈ N. Moreover, the intervals Xk form a
nested sequence converging to [x∗].
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Interval Newton method

Theorem
Brouwer (1910)
Every continuous function f from a convex compact subset K of a
Euclidean space to K itself has a fixed point.
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Interval Newton method

Theorem
Let X ∈ IR, f ∈ C1(X). Let f̃ ′ an interval extension of f ′. We assume
0 /∈ f̃ ′(X).
Let I ∈ IR, x ∈ I ⊂ X, N(I, x) := x− f̃ ′(I)−1f(x)
If N(I) is well defined, then the following statements hold:
(1) if I contains a zero x∗ of f , then so does N(I, x) ∩ I;
(2) if N(I, x) ∩ I = ∅, then I contains no zero of f ;
(3) if N(I, x) ⊆ I, then I contains a unique zero of f .

Proof.

(1) Follows from Mean Value Theorem;
(2) Contra-positive of (1);
(3) Existence from Brouwer’s fixed point theorem; uniqueness from

non-vanishing f̃ ′.
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Interval Newton method

-40-



Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
École Normale Supérieure de Lyon, 2024-2025

-1-



Chapter 4. Rigorous Polynomial Approximations
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When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i,

ε(x) = f(x)− p(x) s.t.
∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)
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Why IA does not suffice: Overestimation

Overestimation can be reduced by using intervals of smaller width.

In this case, over [0, 1] we need 107 intervals!
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Rigorous polynomial approximations

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T of degree n

- interval ∆ s. t. f(x)− T (x) ∈∆,∀x ∈ [a, b]

How to compute (T,∆) ?
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Chebyshev Models

Over [−1, 1], Chebyshev polynomials: Tn(x) = cos (n arccosx) , n ⩾ 0.

Let I = [a, b], we define Chebyshev polynomials over I as

T [a,b]
n (x) = Tn

(
2x− b− a

b− a

)
.

T
[a,b]
n+1 has n+ 1 distinct extrema in [a, b] (Chebyshev nodes of the first

kind):

ν
[a,b]
k =

a+ b

2
+

b− a

2
cos

(
kπ

n

)
, k = 0, . . . , n.
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Chebyshev Models

We recall

Lemma 1

Let Wν(x) =
n∏

k=0

(x− ν
[a,b]
k ). We have

Wµ(x) =
(b− a)n+1

22n
(1− x2)U

[a,b]
n−1 (x)

and

max
x∈[a,b]

|Wµ(x)| =
(b− a)n+1

22n
.
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Chebyshev Models

Lemma 2
(Taylor-Lagrange-like formula.) Let n ∈ N, and let f ∈ Cn+1([a, b]). Let
P ∈ Rn[X] be the interpolation polynomial of f at the Chebyshev nodes(
µ
[a,b]
k

)
0⩽k⩽n

. For all x ∈ [a, b], there exists ξx ∈ (a, b) such that

f(x) = P (x) +
(b− a)n+1f (n+1)(ξx)

22n(n+ 1)!
(1− x2)U

[a,b]
n−1 (x) .
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Chebyshev Models - How do we obtain them?

Let n ∈ N, f ∈ Cn+1([a, b]),

f(x) =
n∑

k=0

pkT
[a,b]
k (x)︸ ︷︷ ︸

T (x)

+∆n(x, ξx)︸ ︷︷ ︸
remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x2)U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies

strictly between a and b

How to compute the coefficients pi of T (x) ?
How to compute an interval enclosure ∆ for ∆n(x, ξx) ?
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Chebyshev Models: computations of the coefficients

P (x) =
n∑

i=0

piT
[a,b]
i (x), with pi =

n∑
k=0

2
nf
(
ν
[a,b]
k

)
T

[a,b]
i

(
ν
[a,b]
k

)
=

n∑
k=0

2
nf
(
ν
[a,b]
k

)
Ti(νk) =

n∑
k=0

2
nf
(
ν
[a,b]
k

)
Tk(νi).
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Reminder: Clenshaw’s method for evaluating Chebyshev
sums

Algorithm

Input Chebyshev coefficients c0, . . . , cN , a point t
Output

∑N
k=0 ckTk (t)

1 bN+1 ← 0, bN ← cN
2 for k = N − 1, N − 2, . . . , 1

1 bk ← 2tbk+1 − bk+2 + ck

3 return c0 + tb1 − b2

This algorithm runs in O (N) arithmetic operations.

It works also if t and the ck’s are intervals!
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nf
(
ν
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We replace the νk’s and the f(νk)’s with interval enclosures, and then
perform an interval evaluation with Clenshaw’s method: the coefficients
pi are intervals.
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Chebyshev Models: bounding the remainder

∆n(x, ξx) =
(b−a)n+1f(n+1)(ξx)

22n(n+1)! (1− x)2U
[a,b]
n−1 (x), x ∈ [a, b], ξ lies strictly

between a and b.

|∆n(x, ξx)| is bounded by
(b−a)n+1|f(n+1)([a,b])|

22n(n+1)! .

If f satisfies a differential equation with polynomial coefficients: fairly
easy to retrieve an upper bound for

∣∣f (n+1)([a, b])
∣∣.

Otherwise?
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Chebyshev Models “Philosophy”

For bounding the remainders:

For “basic functions” use Taylor-Lagrange-like statement.

For “composite functions” use a two-step procedure:
- compute models (T,∆) for all basic functions;
- apply algebraic rules with these models, instead of operations with
the corresponding functions.
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Chebyshev Models - Two-step procedure

Example: fcomp(x) = exp(sin(x) + cos(x))
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Chebyshev Models - Operations: Addition

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Addition
(P1,∆1) + (P2,∆2) = (P1 + P2,∆1 +∆2).
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Chebyshev Models - Operations: Multiplication

For multiplication, we have: T
[a,b]
m (x) · T [a,b]

n (x) =
T

[a,b]
m+n + T

[a,b]
|m−n|

2
.

Consider P (x) =
n∑

i=0

piT
[a,b]
i (x) and Q(x) =

n∑
i=0

qiT
[a,b]
i (x).

We have P (x) ·Q(x) =
2n∑
k=0

ckT
[a,b]
k (x), where

ck =

( ∑
|i−j|=k

piqj +
∑

i+j=k

piqj

)
/2.

The cost is O(n2) operations.
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Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Multiplication
We need algebraic rule for: (P1,∆1) · (P2,∆2) = (P,∆) s.t.
f1(x) · f2(x)− P (x) ∈∆, ∀x ∈ [a, b]

f1(x) · f2(x) ∈ P1(x) · P2(x)︸ ︷︷ ︸+P2 ·∆1 + P1 ·∆2 +∆1 ·∆2︸ ︷︷ ︸
I2

.

(P1(x) · P2(x))0...n︸ ︷︷ ︸
P (x)

+(P1(x) · P2(x))n+1...2n︸ ︷︷ ︸
I1

∆ = I1 + I2

In our case, for bounding “P s”: Interval Arithmetic evaluation.
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Ranges of polynomials

Observe that we heavily used enclosures of ranges of polynomials. This
raises (at least) two questions:

How do we compute these enclosures?
why would this process yield tight enclosures?
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Ranges of polynomials - How do we compute these
enclosures?

A first option: let p(x) = a0 + a1T
[a,b]
1 (x) + · · ·+ anT

[a,b]
n (x), as,

p(I) is bounded by p(x) = |a0|+ |a1|+ · · ·+ |an|.

Another possibility is to use Bernstein’s basis: indeed, one can show
that if

p(x) =
n∑

k=0

pkBn,k(x),

then for all x ∈ [0, 1], we have

min
[0,1]

p ⩾ min
k

pk and max
[0,1]

p ⩽ max
k

pk.

Warning: need for a conversion algorithm (cost in O(M(n))).
Problems of stability.
Tighter methods based on Descartes’ rule of signs, Sturm’s theorem,
sums of squares (Hilbert’s 17th problem), companion matrices, etc.
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Ranges of polynomials

Second, why would this process yield tight enclosures? Our basic
functions are analytic, and hence the coefficients of Chebyshev
interpolants (quickly) converge to 0.

-22-



Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 +∆2 ⊆ [c, d]

f1() ∈ P1() +∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw’s algorithm
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Chebyshev Models: using truncated Chebyshev series

P (x) =
n∑

k=0

′akTk(x), where ak =
2

π

1∫
−1

f(x)Tk(x)√
1− x2

dx.

Computation of the coefficients (for “basic” D-finite functions1)

Truncation Error: Bernstein-like formula (for “basic” D-finite functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

1solutions of Linear Differential Equations with polynomial coefficients
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’09. ACM, New York, NY, 23-30
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