
Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
École Normale Supérieure de Lyon, 2024-2025

-1-

Section 2.2. A little bit of quadrature: Gauss methods

Let w be a weight function over (a, b), and let f ∈ C([a, b]). We briefly
study methods which approximate the integral∫ b

a

f(x)w(x)dx

with a sum of the form
n∑

k=0

wkf(xk), wk ∈ R, xk ∈ [a, b] pairwise distinct.

-11-

Section 2.2. A little bit of quadrature: Gauss methods

First of all, if ℓk(x) =
n∏

j=0,
j ̸=k

x− xj

xk − xj
, observe that if

p(x) =

n∑
k=0

f(xk)ℓk(x) ∈ Rn[x]

interpolates f at the points x0, . . . , xn, then our approximation for the
integral is equal to

∫ b

a
p(x)w(x)dx =

∑n
k=0 wkf(xk) with

wk =

∫ b

a

ℓk(x)w(x)dx for k = 0, . . . , n.

-12-

Section 2.2. A little bit of quadrature: Gauss methods

Theorem 8
There exists a unique choice of the points xk and the weights wk such
that, whenever f ∈ R2n+1[x],∫ b

a

f(x)w(x)dx =

n∑
k=0

wkf(xk).

These points xk belong to (a, b) and are the roots of the (n+ 1)-th
orthogonal polynomial associated to w.

-13-

Section 2.2. A little bit of quadrature: Clenshaw-Curtis
quadrature

Remark
The Chebyshev polynomials of the first kind satisfy∫ 1

−1

Tk(x)dx =

{
2

1−k2 , k ∈ 2N,
0, k ̸∈ 2N.

If p =
∑n

k=0 ckTk, we deduce that the integral with weight w = 1 is
given by ∫ 1

−1

p(x)dx =
∑

0 ⩽ k ⩽ n
k ∈ 2N

2ck
1− k2

.

-14-

Section 2.3. Lebesgue constants

For simplicity, we assume [a, b] = [−1, 1].

Definition 9
We say that a linear mapping L : C([−1, 1]) → Rn[x] is a projection onto
Rn[x] if Lp = p for all p ∈ Rn[x]. The operator norm

Λ = sup
f∈C([−1,1])

∥Lf∥∞
∥f∥∞

is called the Lebesgue constant for the projection.

Proposition

Let Λ be the Lebesgue constant for the linear projection L of C([−1, 1])
onto Rn[x]. Let f ∈ C([−1, 1]) and let p = Lf . Let p∗ denote the
minimax approximation to f . Then, we have

∥f − p∥∞ ⩽ (1 + Λ)∥f − p∗∥∞.

-15-

Section 2.3. Lebesgue constants

For simplicity, we assume [a, b] = [−1, 1].

Definition 9
We say that a linear mapping L : C([−1, 1]) → Rn[x] is a projection onto
Rn[x] if Lp = p for all p ∈ Rn[x]. The operator norm

Λ = sup
f∈C([−1,1])

∥Lf∥∞
∥f∥∞

is called the Lebesgue constant for the projection.

Proposition

Let Λ be the Lebesgue constant for the linear projection L of C([−1, 1])
onto Rn[x]. Let f ∈ C([−1, 1]) and let p = Lf . Let p∗ denote the
minimax approximation to f . Then, we have

∥f − p∥∞ ⩽ (1 + Λ)∥f − p∗∥∞.

-15-

2.3.1. Lebesgue constants for polynomial interpolation

Let x0, . . . , xn be pairwise distinct points in [−1, 1]. Consider the
Lagrange interpolation operator

Ln : C([−1, 1]) → Rn[x], Lnf(x) =

n∑
k=0

f(xk)ℓk(x).

Theorem 10
The Lebesgue constant of degree-n Lagrange interpolation at x0, . . . , xn

is equal to

max
x∈[−1,1]

n∑
k=0

|ℓk(x)|.

-16-

2.3.1. Lebesgue constants for polynomial interpolation

Let x0, . . . , xn be pairwise distinct points in [−1, 1]. Consider the
Lagrange interpolation operator

Ln : C([−1, 1]) → Rn[x], Lnf(x) =

n∑
k=0

f(xk)ℓk(x).

Theorem 10
The Lebesgue constant of degree-n Lagrange interpolation at x0, . . . , xn

is equal to

max
x∈[−1,1]

n∑
k=0

|ℓk(x)|.

-16-

2.3.1. Lebesgue constants for polynomial interpolation

Theorem 11
The Lebesgue constant Λn satisfies

2

π

(
log(n+ 1) + γ + log

4

π

)
⩽ Λn, where

2

π

(
γ + log

4

π

)
= 0.52125 . . .

Additionally,
for Chebyshev nodes (of the first and the second kinds), we have the
bound

Λn ⩽
2

π
log(n+ 1) + 1 and Λn ∼ 2

π
log n as n → +∞;

for equispaced points,

Λn >
2n−2

n2
and Λn ∼ 2n+1

en log n
as n → +∞.

-17-

2.3.1. Lebesgue constants for polynomial interpolation

Remark
We deduce from this theorem that Chebyshev interpolants (i.e.
interpolation polynomials at Chebyshev nodes) are "near-best"
approximations:

Λ15 = 2.76 . . .: one loses at most 2 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial;
Λ30 = 3.18 . . .: one loses at most 2 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial;
Λ100 = 3.93 . . .: one loses at most 2 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial;
Λ100000 = 8.32 . . .: one loses at most 4 bits if one uses a Chebyshev
interpolant instead of the minimax polynomial.

-18-

2.3.2. Lebesgue constants for L2 best approximation

When the L2 space under consideration is L2

(
[−1, 1], 1√

1−x2

)
, the best

polynomial approximation p2,n is called the truncated Chebyshev series of
order n.

Theorem 12
The Lebesgue constant for the L2

(
[−1, 1], 1√

1−x2

)
projection onto

Rn[x] is

Λn =
1

2π

∫ π

−π

∣∣∣∣ sin((n+ 1/2)t)

sin(t/2)

∣∣∣∣dt.
We have

Λn ⩽
4

π2
log(n+ 1) + 3 and Λn ∼ 4

π2
log n as n → +∞.

-19-

2.3.2. Lebesgue constants for L2 best approximation

Remark
We deduce from this theorem that truncated Chebyshev series are
"near-best" approximations:

Λ15 = 4.12 . . .: one loses at most 3 bits if one uses the truncated
Chebyshev series instead of the minimax polynomial;
Λ30 = 4.39 . . .: one loses at most 3 bits if one uses the truncated
Chebyshev series instead of the minimax polynomial;
Λ100 = 4.87 . . .: one loses at most 3 bits if one uses the truncated
Chebyshev series instead of the minimax polynomial;
Λ100000 = 7.66 . . .: one loses at most 3 bits if one uses the
truncated Chebyshev series instead of the minimax polynomial.

-20-

2.3.3. Corollary: A first statement on the convergence of
Chebyshev interpolants and truncated Chebyshev series

Let f ∈ C([a, b]). The modulus of continuity of f is the function ω
defined as

for all δ > 0, ω(δ) = sup
|x− y| < δ,
x, y ∈ [a, b]

|f(x)− f(y)|.

Proposition

If f is a continuous function over [0, 1], ω its modulus of continuity, then
we have

∥f −Bn(f, ·)∥∞ = 9
4ω
(
n− 1

2

)
.

-21-

2.3.3. Corollary: A first statement on the convergence of
Chebyshev interpolants and truncated Chebyshev series

Let f ∈ C([a, b]). The modulus of continuity of f is the function ω
defined as

for all δ > 0, ω(δ) = sup
|x− y| < δ,
x, y ∈ [a, b]

|f(x)− f(y)|.

Proposition

If f is a continuous function over [0, 1], ω its modulus of continuity, then
we have

∥f −Bn(f, ·)∥∞ = 9
4ω
(
n− 1

2

)
.

-21-

2.3.3. Corollary: A first statement on the convergence of
Chebyshev interpolants and truncated Chebyshev series

Theorem 13
If f is Lipschitz continuous over [a, b], then

1 the sequence of interpolation polynomials at the Chebyshev nodes
uniformly converges to f .

2 The truncated Chebyshev series of f uniformly converges to f .

-22-

Section 2.4.2. Convergence

Remark
The Chebyshev expansion of f is the Fourier expansion of f(cos t), so
that many results on the convergence of Chebyshev expansions can be
deduced from corresponding results in the well-developed theory of
Fourier series.

-23-

Section 2.4.2. Convergence

Theorem 14
Let f be continuous on [−1, 1]. Denote by (ak) its sequence of
Chebyshev coefficients, by (fn) its sequence of truncated Chebyshev
expansions and by (pn)n∈N the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

1 The coefficients ak tend to 0 when k → ∞.

2 If f is Lipschitz continuous on [−1, 1], then (fn) converges
absolutely and uniformly to f and (pn) converges uniformly to f .

3 If f is Cm and f (m) is Lipschitz continuous, then ak = O(1/km+1),
∥f − fn∥∞ = O(n−m) and ∥f − pn∥∞ = O(n−m).

-24-

Section 2.4.2. Convergence

Theorem 14
Let f be continuous on [−1, 1]. Denote by (ak) its sequence of
Chebyshev coefficients, by (fn) its sequence of truncated Chebyshev
expansions and by (pn)n∈N the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

1 The coefficients ak tend to 0 when k → ∞.

2 If f is Lipschitz continuous on [−1, 1], then (fn) converges
absolutely and uniformly to f and (pn) converges uniformly to f .

3 If f is Cm and f (m) is Lipschitz continuous, then ak = O(1/km+1),
∥f − fn∥∞ = O(n−m) and ∥f − pn∥∞ = O(n−m).

-24-

Section 2.4.2. Convergence

Theorem 14
Let f be continuous on [−1, 1]. Denote by (ak) its sequence of
Chebyshev coefficients, by (fn) its sequence of truncated Chebyshev
expansions and by (pn)n∈N the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

1 The coefficients ak tend to 0 when k → ∞.

2 If f is Lipschitz continuous on [−1, 1], then (fn) converges
absolutely and uniformly to f and (pn) converges uniformly to f .

3 If f is Cm and f (m) is Lipschitz continuous, then ak = O(1/km+1),
∥f − fn∥∞ = O(n−m) and ∥f − pn∥∞ = O(n−m).

-24-

Bernstein Ellipse

Let ρ > 1, let

Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
=
{
z ∈ C : |z +

√
z2 − 1| ⩽ ρ

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45, 1.65, 1.85.

-25-

Bernstein Ellipse

Let ρ > 1, let

Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
=
{
z ∈ C : |z +

√
z2 − 1| ⩽ ρ

}
.

Bernstein ellipses for ρ = 1.05,

1.25, 1.45, 1.65, 1.85.

-25-

Bernstein Ellipse

Let ρ > 1, let

Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
=
{
z ∈ C : |z +

√
z2 − 1| ⩽ ρ

}
.

Bernstein ellipses for ρ = 1.05, 1.25,

1.45, 1.65, 1.85.

-25-

Bernstein Ellipse

Let ρ > 1, let

Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
=
{
z ∈ C : |z +

√
z2 − 1| ⩽ ρ

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45,

1.65, 1.85.

-25-

Bernstein Ellipse

Let ρ > 1, let

Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
=
{
z ∈ C : |z +

√
z2 − 1| ⩽ ρ

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45, 1.65,

1.85.

-25-

Bernstein Ellipse

Let ρ > 1, let

Eρ :=

{
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
=
{
z ∈ C : |z +

√
z2 − 1| ⩽ ρ

}
.

Bernstein ellipses for ρ = 1.05, 1.25, 1.45, 1.65, 1.85.
-25-

Section 2.4.2. Convergence

Theorem 15
Let f be continuous on [−1, 1]. Denote by (ak) its sequence of
Chebyshev coefficients, by (fn) its sequence of truncated Chebyshev
expansions and by (pn)n∈N the sequence of interpolation polynomials of
f at the Chebyshev nodes. Then

1 If f is analytic inside the ellipse Eρ :={
ρeiθ + ρ−1e−iθ

2
, θ ∈ [0, 2π]

}
=
{
z ∈ C : |z +

√
z2 − 1| ⩽ ρ

}
with ρ > 1, then ak = O(ρ−k), ∥f − fn∥∞ = O(ρ−n) and
∥f − pn∥∞ = O(ρ−n).

-26-

Section 2.4.2. Convergence

Theorem 16
Let f be continuous on [−1, 1]. Denote by (fn) its sequence of truncated
Chebyshev expansions and by (pn)n∈N the sequence of interpolation
polynomials of f at the Chebyshev nodes. Then

5 Let P ∗
n denote the minimax polynomial of degree at most n of f . If

f ∈ Cn+1([−1, 1]), there exists ξ1, ξ2, ξ3 ∈ (−1, 1) such that

∥f − P ∗
n∥∞ =

|f (n+1)(ξ1)|
2n(n+ 1)!

;

∥f − fn∥∞ =
|f (n+1)(ξ2)|
2n(n+ 1)!

;

∥f − pn∥∞ =
|f (n+1)(ξ3)|
2n(n+ 1)!

.

-27-

Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
École Normale Supérieure de Lyon, 2024-2025

-1-

Chapter 3. Interval Arithmetic, Interval Analysis

-2-

Floating Point (FP) Arithmetic

Given a radix β ⩾ 2,
a precision p ⩾ 1,
a set of exponents Emin, · · · , Emax.

A finite FP number x is represented by 2 integers:
integer mantissa : M , βp−1 ⩽ |M | ⩽ βp − 1;
exponent E, Emin ⩽ E ⩽ Emax

such that
x =

M

βp−1
× βE .

We assume binary FP arithmetic (that is to say β = 2.)
We denote Fp the corresponding set of FP numbers.
Multiple-precision FP arithmetic: we let p and E vary.

-3-

IEEE Precisions

See http://en.wikipedia.org/wiki/IEEE_floating_point

precision minimal exponent maximal exponent
single (binary 32) 24 −126 127
double (binary 64) 53 −1022 1023
extended double 64 −16382 16383
quadruple (binary 128) 113 −16382 16383

-4-

http://en.wikipedia.org/wiki/IEEE_floating_point

IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to Fp

may not belong to Fp (in general it does not): the result must be
rounded.

IEEE standard defines 4 different rounding modes:
rounding towards +∞, or upwards: ◦u(x) = min{y ∈ Fp : y ⩾ x};
rounding towards −∞, or downwards:
◦d(x) = max{y ∈ Fp : y ⩽ x};
rounding towards 0: ◦z(x) := ◦u(x) if x < 0, and to ◦d(x)
otherwise;
rounding to the nearest even: ◦n(x) is the element of Fp that is
closest to x. If x is exactly halfway between two consecutive
elements of Fp, ◦n(x) is the one for which the integral significand j
is an even number.

The first three rounding modes are called directed rounding modes.

-5-

IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to Fp

may not belong to Fp (in general it does not): the result must be
rounded.
IEEE standard defines 4 different rounding modes:

rounding towards +∞, or upwards: ◦u(x) = min{y ∈ Fp : y ⩾ x};

rounding towards −∞, or downwards:
◦d(x) = max{y ∈ Fp : y ⩽ x};
rounding towards 0: ◦z(x) := ◦u(x) if x < 0, and to ◦d(x)
otherwise;
rounding to the nearest even: ◦n(x) is the element of Fp that is
closest to x. If x is exactly halfway between two consecutive
elements of Fp, ◦n(x) is the one for which the integral significand j
is an even number.

The first three rounding modes are called directed rounding modes.

-5-

IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to Fp

may not belong to Fp (in general it does not): the result must be
rounded.
IEEE standard defines 4 different rounding modes:

rounding towards +∞, or upwards: ◦u(x) = min{y ∈ Fp : y ⩾ x};
rounding towards −∞, or downwards:
◦d(x) = max{y ∈ Fp : y ⩽ x};

rounding towards 0: ◦z(x) := ◦u(x) if x < 0, and to ◦d(x)
otherwise;
rounding to the nearest even: ◦n(x) is the element of Fp that is
closest to x. If x is exactly halfway between two consecutive
elements of Fp, ◦n(x) is the one for which the integral significand j
is an even number.

The first three rounding modes are called directed rounding modes.

-5-

IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to Fp

may not belong to Fp (in general it does not): the result must be
rounded.
IEEE standard defines 4 different rounding modes:

rounding towards +∞, or upwards: ◦u(x) = min{y ∈ Fp : y ⩾ x};
rounding towards −∞, or downwards:
◦d(x) = max{y ∈ Fp : y ⩽ x};
rounding towards 0: ◦z(x) := ◦u(x) if x < 0, and to ◦d(x)
otherwise;

rounding to the nearest even: ◦n(x) is the element of Fp that is
closest to x. If x is exactly halfway between two consecutive
elements of Fp, ◦n(x) is the one for which the integral significand j
is an even number.

The first three rounding modes are called directed rounding modes.

-5-

IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to Fp

may not belong to Fp (in general it does not): the result must be
rounded.
IEEE standard defines 4 different rounding modes:

rounding towards +∞, or upwards: ◦u(x) = min{y ∈ Fp : y ⩾ x};
rounding towards −∞, or downwards:
◦d(x) = max{y ∈ Fp : y ⩽ x};
rounding towards 0: ◦z(x) := ◦u(x) if x < 0, and to ◦d(x)
otherwise;
rounding to the nearest even: ◦n(x) is the element of Fp that is
closest to x. If x is exactly halfway between two consecutive
elements of Fp, ◦n(x) is the one for which the integral significand j
is an even number.

The first three rounding modes are called directed rounding modes.

-5-

IEEE Rounding Modes

The result of an arithmetic operation whose input values belong to Fp

may not belong to Fp (in general it does not): the result must be
rounded.
IEEE standard defines 4 different rounding modes:

rounding towards +∞, or upwards: ◦u(x) = min{y ∈ Fp : y ⩾ x};
rounding towards −∞, or downwards:
◦d(x) = max{y ∈ Fp : y ⩽ x};
rounding towards 0: ◦z(x) := ◦u(x) if x < 0, and to ◦d(x)
otherwise;
rounding to the nearest even: ◦n(x) is the element of Fp that is
closest to x. If x is exactly halfway between two consecutive
elements of Fp, ◦n(x) is the one for which the integral significand j
is an even number.

The first three rounding modes are called directed rounding modes.

-5-

Chapter 3. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

Interval Arithmetic is “an arithmetic for inequalities”.

Assume for instance that we know that 5 ⩽ a ⩽ 6 and 10 ⩽ b ⩽ 11: then
of course 50 ⩽ ab ⩽ 66. We will define a product of real intervals such
that

[5, 6]× [10, 11] = [50, 66]

that allows for such reasoning.

In double precision, compute xk+1 = (xk)
2 where x0 = 1− 10−19.

Another need for interval arithmetic comes from the roundoff errors that
occur when working with finite precision numbers.

-6-

Chapter 3. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

Interval Arithmetic is “an arithmetic for inequalities”.
Assume for instance that we know that 5 ⩽ a ⩽ 6 and 10 ⩽ b ⩽ 11: then
of course 50 ⩽ ab ⩽ 66. We will define a product of real intervals such
that

[5, 6]× [10, 11] = [50, 66]

that allows for such reasoning.

In double precision, compute xk+1 = (xk)
2 where x0 = 1− 10−19.

Another need for interval arithmetic comes from the roundoff errors that
occur when working with finite precision numbers.

-6-

Chapter 3. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

Interval Arithmetic is “an arithmetic for inequalities”.
Assume for instance that we know that 5 ⩽ a ⩽ 6 and 10 ⩽ b ⩽ 11: then
of course 50 ⩽ ab ⩽ 66. We will define a product of real intervals such
that

[5, 6]× [10, 11] = [50, 66]

that allows for such reasoning.

In double precision, compute xk+1 = (xk)
2 where x0 = 1− 10−19.

Another need for interval arithmetic comes from the roundoff errors that
occur when working with finite precision numbers.

-6-

Chapter 3. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

Interval Arithmetic is “an arithmetic for inequalities”.
Assume for instance that we know that 5 ⩽ a ⩽ 6 and 10 ⩽ b ⩽ 11: then
of course 50 ⩽ ab ⩽ 66. We will define a product of real intervals such
that

[5, 6]× [10, 11] = [50, 66]

that allows for such reasoning.

In double precision, compute xk+1 = (xk)
2 where x0 = 1− 10−19.

Another need for interval arithmetic comes from the roundoff errors that
occur when working with finite precision numbers.

-6-

Chapter 3. Interval Arithmetic, Interval Analysis, Rigorous
Polynomial Approximations

Notable applications of interval arithmetic to bring rigor to numerical
computations performed on a computer include:

T. Hales’ proof of Kepler’s conjecture (see
https://code.google.com/p/flyspeck/),
W. Tucker’s solution of Smale’s 14th problem (see
https://www2.math.uu.se/~warwick/main/thesis.html and
also https://paulbourke.net/fractals/lorenz/).

Numerous additional interesting information on the website
https://www.cs.utep.edu/interval-comp/.

-7-

https://code.google.com/p/flyspeck/
https://www2.math.uu.se/~warwick/main/thesis.html
https://paulbourke.net/fractals/lorenz/
https://www.cs.utep.edu/interval-comp/

Chapter 3. Interval Arithmetic, Interval Analysis

In this course, we are interested in the use of interval arithmetic for
mathematical function evaluation purpose.

Given ε > 0 and f : [a, b] → R, we would like to make sure that the
evaluation f̂ (x) of f at any value x ∈ [a, b] is such that

|f̂ (x)− f (x) | ⩽ ε.

Note that, in practice, one commonly uses relative error
∣∣∣∣1− f̂(x)

f(x)

∣∣∣∣ rather

than absolute error |f̂ (x)− f (x) |.

We focus on the absolute error case for the sake of clarity.

-8-

Chapter 3. Interval Arithmetic, Interval Analysis

In this course, we are interested in the use of interval arithmetic for
mathematical function evaluation purpose.
Given ε > 0 and f : [a, b] → R, we would like to make sure that the
evaluation f̂ (x) of f at any value x ∈ [a, b] is such that

|f̂ (x)− f (x) | ⩽ ε.

Note that, in practice, one commonly uses relative error
∣∣∣∣1− f̂(x)

f(x)

∣∣∣∣ rather

than absolute error |f̂ (x)− f (x) |.

We focus on the absolute error case for the sake of clarity.

-8-

Chapter 3. Interval Arithmetic, Interval Analysis

In this course, we are interested in the use of interval arithmetic for
mathematical function evaluation purpose.
Given ε > 0 and f : [a, b] → R, we would like to make sure that the
evaluation f̂ (x) of f at any value x ∈ [a, b] is such that

|f̂ (x)− f (x) | ⩽ ε.

Note that, in practice, one commonly uses relative error
∣∣∣∣1− f̂(x)

f(x)

∣∣∣∣ rather

than absolute error |f̂ (x)− f (x) |.

We focus on the absolute error case for the sake of clarity.

-8-

Chapter 3. Interval Arithmetic, Interval Analysis

To perform the evaluation, we replace f by a polynomial p. Then we
evaluate p, and f̂ (x) = ◦ (p (x)), where ◦ is the active rounding mode.

There are two sources of error:
approximation error: let η1 be an upper bound for ∥f − p∥∞,
rounding error: let η2 be an upper bound for the error
|p (x)− ◦ (p (x))|,

we have to guarantee that η1 + η2 ⩽ ε.

In this course: tools that help to establish rigorous approximation error.

Regarding rounding errors, G.Melquiond has developed formal proof tools
(in Coq) which address this issue (see
https://gappa.gitlabpages.inria.fr/).

-9-

https://gappa.gitlabpages.inria.fr/

Chapter 3. Interval Arithmetic, Interval Analysis

To perform the evaluation, we replace f by a polynomial p. Then we
evaluate p, and f̂ (x) = ◦ (p (x)), where ◦ is the active rounding mode.

There are two sources of error:
approximation error: let η1 be an upper bound for ∥f − p∥∞,
rounding error: let η2 be an upper bound for the error
|p (x)− ◦ (p (x))|,

we have to guarantee that η1 + η2 ⩽ ε.

In this course: tools that help to establish rigorous approximation error.

Regarding rounding errors, G.Melquiond has developed formal proof tools
(in Coq) which address this issue (see
https://gappa.gitlabpages.inria.fr/).

-9-

https://gappa.gitlabpages.inria.fr/

Chapter 3. Interval Arithmetic, Interval Analysis

To perform the evaluation, we replace f by a polynomial p. Then we
evaluate p, and f̂ (x) = ◦ (p (x)), where ◦ is the active rounding mode.

There are two sources of error:
approximation error: let η1 be an upper bound for ∥f − p∥∞,
rounding error: let η2 be an upper bound for the error
|p (x)− ◦ (p (x))|,

we have to guarantee that η1 + η2 ⩽ ε.

In this course: tools that help to establish rigorous approximation error.

Regarding rounding errors, G.Melquiond has developed formal proof tools
(in Coq) which address this issue (see
https://gappa.gitlabpages.inria.fr/).

-9-

https://gappa.gitlabpages.inria.fr/

3.1. Interval arithmetic

Definition
(Real interval.) Let x̄, x ∈ R, x̄ ⩽ x. We define the interval

X = [x, x̄] = {x ∈ R : x ⩽ x ⩽ x̄} .

The real numbers x and x̄ are called the endpoints of the interval, x is its
minimum, x̄ its maximum. The set of all real intervals will be denoted IR.

Definition
Let x ∈ IR. The width of x is denoted w (x) = x̄− x. We also define the
center

mid (x) =
x+ x̄

2
,

and the radius rad (x) = 1
2w (x).

-10-

3.1. Interval arithmetic

Definition
(Real interval.) Let x̄, x ∈ R, x̄ ⩽ x. We define the interval

X = [x, x̄] = {x ∈ R : x ⩽ x ⩽ x̄} .

The real numbers x and x̄ are called the endpoints of the interval, x is its
minimum, x̄ its maximum. The set of all real intervals will be denoted IR.

Definition
Let x ∈ IR. The width of x is denoted w (x) = x̄− x. We also define the
center

mid (x) =
x+ x̄

2
,

and the radius rad (x) = 1
2w (x).

-10-

3.1. Interval arithmetic

Remark
It is common in the litterature to encounter the notation
(mid (x) , rad (x)) = {x ∈ R : |x−mid (x)| ⩽ rad (x)}.

This mid-rad representation is the basis of the so called Ball Arithmetic,
cf. the excellent software Arb, now a part of
FLINT https://flintlib.org/.

Definition
A point (or degenerate, or thin) interval is one of the form [x, x], also
denoted [x].

-11-

https://flintlib.org/

3.1. Interval arithmetic

Remark
It is common in the litterature to encounter the notation
(mid (x) , rad (x)) = {x ∈ R : |x−mid (x)| ⩽ rad (x)}.

This mid-rad representation is the basis of the so called Ball Arithmetic,
cf. the excellent software Arb, now a part of
FLINT https://flintlib.org/.

Definition
A point (or degenerate, or thin) interval is one of the form [x, x], also
denoted [x].

-11-

https://flintlib.org/

3.1.1. Operations on intervals

We now define basic arithmetic operations on intervals. As you will see,
monotonicity plays an essential role for obtaining sharp enclosures.

Definition
Let X,Y ∈ IR. Let ∗ ∈ {+,−,×, /}. We denote

X ∗ Y = {x ∗ y;x ∈ X, y ∈ Y }

where, if ∗ = /, we assume that 0 ̸∈ Y .

-12-

3.1.1. Operations on intervals

Proposition

We can compute the X ∗ Y above using formulae such as

[x, x̄] +
[
y, ȳ
]
=
[
x+ y, x̄+ ȳ

]
,

[x, x̄]−
[
y, ȳ
]
=
[
x− ȳ, x̄− y

]
,

[x, x̄]×
[
y, ȳ
]
=
[
min

(
x·y, x·ȳ, x̄·y, x̄·ȳ

)
,max

(
x·y, x·ȳ, x̄·y, x̄·ȳ

)]
,

[x, x̄] /
[
y, ȳ
]
= [x, x̄]×

[
1

ȳ
,
1

y

]
if 0/∈Y,

which depend only on the endpoints.

Proof.
Exercise.

-13-

3.1.1. Operations on intervals

Remark
Note that, in IR, the operations + and × are associative and
commutative.

Remark
In practice, multiplication (hence division) can be made more efficient
(check the signs of the endpoints).

-14-

3.1.1. Operations on intervals

Proposition

1 Interval subtraction is not the inverse of addition.
2 Interval division is not the inverse of multiplication.
3 Interval multiplication of an interval with itself is not equivalent to

“squaring the interval”: if x < 0 < x̄,

[x, x̄]× [x, x̄] ̸=
[
0,max

(
x2, x̄2

)]
.

4 Interval multiplication is sub-distributive wrt addition: for all
X,Y, Z ∈ IR, we have

X × (Y + Z) ⊂ X × Y +X × Z.

5 For all X ∈ IR, we have X + [0] = X and [0]×X = [0].

Proof.
Exercise.

-15-

3.1.1. Operations on intervals

A straightforward yet quite useful statement is the following.

Lemma
(Inclusion isotonicity) If X ⊂ X ′, Y ⊂ Y ′, ∗ ∈ {+,−,×, /}, then

X ∗ Y ⊂ X ′ ∗ Y ′.

For division, we assume that 0 /∈ Y ′.

Proof.
Obvious from Definition .

-16-

3.1.2. Floating-point interval arithmetic

When it comes to implementing interval arithmetic on a computer, we no
longer work over R, but in most cases with floating-point numbers.

Let F be the set of machine numbers we are working with. Then we
denote

IF = {[x, x̄] : x, x̄ ∈ F} .

Of course the set of floating-point numbers is not arithmetically closed
(e.g., the sum of two floating-point numbers is not always a
floating-point number).

When we perform arithmetic operations on intervals in IF , we need to
make sure to “round the resulting interval outwards” in order to
guarantee that it contains the “true result”.

-17-

3.1.2. Floating-point interval arithmetic

When it comes to implementing interval arithmetic on a computer, we no
longer work over R, but in most cases with floating-point numbers.

Let F be the set of machine numbers we are working with. Then we
denote

IF = {[x, x̄] : x, x̄ ∈ F} .

Of course the set of floating-point numbers is not arithmetically closed
(e.g., the sum of two floating-point numbers is not always a
floating-point number).

When we perform arithmetic operations on intervals in IF , we need to
make sure to “round the resulting interval outwards” in order to
guarantee that it contains the “true result”.

-17-

3.1.2. Floating-point interval arithmetic

When it comes to implementing interval arithmetic on a computer, we no
longer work over R, but in most cases with floating-point numbers.

Let F be the set of machine numbers we are working with. Then we
denote

IF = {[x, x̄] : x, x̄ ∈ F} .

Of course the set of floating-point numbers is not arithmetically closed
(e.g., the sum of two floating-point numbers is not always a
floating-point number).

When we perform arithmetic operations on intervals in IF , we need to
make sure to “round the resulting interval outwards” in order to
guarantee that it contains the “true result”.

-17-

3.1.2. Floating-point interval arithmetic

When it comes to implementing interval arithmetic on a computer, we no
longer work over R, but in most cases with floating-point numbers.

Let F be the set of machine numbers we are working with. Then we
denote

IF = {[x, x̄] : x, x̄ ∈ F} .

Of course the set of floating-point numbers is not arithmetically closed
(e.g., the sum of two floating-point numbers is not always a
floating-point number).

When we perform arithmetic operations on intervals in IF , we need to
make sure to “round the resulting interval outwards” in order to
guarantee that it contains the “true result”.

-17-

3.1.2. Floating-point interval arithmetic

For X,Y ∈ IF , we set

X + Y =
[
▽
(
x+ y

)
,△ (x̄+ ȳ)

]
,

X − Y =
[
▽ (x− ȳ) ,△

(
x̄− y

)]
,

X×Y =
[
min

(
▽
(
x·y
)
,▽ (x·ȳ) ,▽

(
x̄·y
)
,▽ (x̄·ȳ)

)
,

max
(
△
(
x·y
)
,△ (x·ȳ) ,△

(
x̄·y
)
,△ (x̄·ȳ)

)]
,

X/Y =
[
min

(
▽
(
x/y

)
,▽ (x/ȳ) ,▽

(
x̄/y

)
,▽ (x̄/ȳ)

)
,

max
(
△
(
x/y

)
,△ (x/ȳ) ,△

(
x̄/y

)
,△ (x̄/ȳ)

)]
if 0 /∈ Y,

where ▽ and △ denote rounding to −∞ and +∞ respectively.

-18-

3.1.2. Floating-point interval arithmetic

Remark
Standard machine floating-point numbers are not always sufficient, e.g.,
to work with very small intervals. We may also use multiple-precision
floating-point numbers as bounds for our intervals. An example of a
library which offers support for multiple precision interval arithmetic is
MPFR1.

1http://www.mpfr.org
-19-

http://www.mpfr.org

3.2. Interval functions

Definition
Let D ⊂ R, and let f : D → R. We denote

R (f,D) = {f (x) : x ∈ D}

the range of f over D.

Remark
Finding the exact image of a (usually multivariate) function, and, in
particular, a value where f attains its minimum is a whole subdomain of
Math and CS called Global Optimization.

-20-

3.2. Interval functions

Definition
Let D ⊂ R, and let f : D → R. We denote

R (f,D) = {f (x) : x ∈ D}

the range of f over D.

Remark
Finding the exact image of a (usually multivariate) function, and, in
particular, a value where f attains its minimum is a whole subdomain of
Math and CS called Global Optimization.

-20-

3.2. Interval functions

Let X = [x, x̄] ∈ IR. By monotonicity, interval functions defined as
follows give the exact range of the corresponding real functions:

eX = [expx, exp x̄] ,
√
X =

[√
x,
√
x̄
]
, x⩾0,

logX = [log x, log x̄] , x > 0,

arctanX = [arctanx, arctan x̄] ,

-21-

3.2. Interval functions

For some other functions like xn, trigonometric functions..., writing down
R (f,D) is also possible, as long as we know their extrema. For instance,
let n ∈ Z, X ∈ IR,

Xn = pow (X,n) =

if n ∈ 2N+ 1, [xn, x̄n]
if n ∈ N \ {0} , n even,

[min (xn, x̄n) ,max (xn, x̄n)] if 0 /∈ X,
[0,max (xn, x̄n)] otherwise,

[1, 1] if n = 0,

[1/x̄, 1/x]
−n

if −n ∈ N and 0 /∈ X.

-22-

3.2. Interval functions

Exercise
Write the analogous formulas for sin, cos, tan. For sin and tan, consider

S+
1 =

{
2kπ +

π

2
, k ∈ Z

}
, S−

1 =
{
2kπ − π

2
, k ∈ Z

}
.

For cos, consider

S+
2 = {2kπ, k ∈ Z} , S−

2 = {2kπ + π, k ∈ Z} .

-23-

3.2. Interval functions

The example of f (x) = x2 − x+ 1 over [0, 2] illustrates two important
issues:

overestimation;
dependency on the way the function is written.

We have f (x) ∈ [0, 2]
2 − [0, 2] + [1] = [0, 4] + [−2, 0] + [1] = [−1, 5].

Now write f (x) = x (x− 1) + 1. We have
f (x) ∈ [0, 2] [−1, 1] + [1] = [−2, 2] + [1, 1] = [−1, 3].

Actually, R (f, [0, 2]) = [3/4, 3].

-24-

3.2. Interval functions

The example of f (x) = x2 − x+ 1 over [0, 2] illustrates two important
issues:

overestimation;
dependency on the way the function is written.

We have f (x) ∈ [0, 2]
2 − [0, 2] + [1] = [0, 4] + [−2, 0] + [1] = [−1, 5].

Now write f (x) = x (x− 1) + 1. We have
f (x) ∈ [0, 2] [−1, 1] + [1] = [−2, 2] + [1, 1] = [−1, 3].

Actually, R (f, [0, 2]) = [3/4, 3].

-24-

3.2. Interval functions

The example of f (x) = x2 − x+ 1 over [0, 2] illustrates two important
issues:

overestimation;
dependency on the way the function is written.

We have f (x) ∈ [0, 2]
2 − [0, 2] + [1] = [0, 4] + [−2, 0] + [1] = [−1, 5].

Now write f (x) = x (x− 1) + 1. We have
f (x) ∈ [0, 2] [−1, 1] + [1] = [−2, 2] + [1, 1] = [−1, 3].

Actually, R (f, [0, 2]) = [3/4, 3].

-24-

3.2. Interval functions

The example of f (x) = x2 − x+ 1 over [0, 2] illustrates two important
issues:

overestimation;
dependency on the way the function is written.

We have f (x) ∈ [0, 2]
2 − [0, 2] + [1] = [0, 4] + [−2, 0] + [1] = [−1, 5].

Now write f (x) = x (x− 1) + 1. We have
f (x) ∈ [0, 2] [−1, 1] + [1] = [−2, 2] + [1, 1] = [−1, 3].

Actually, R (f, [0, 2]) = [3/4, 3].

-24-

