Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

Section 2.4. Interpolation and approximation, Chebyshev polynomials

We have $\operatorname{deg} T_{n}=\operatorname{deg} U_{n}=n$ for all $n \in \mathbb{N}$.
Therefore, $\left(T_{k}\right)_{0 \leqslant k \leqslant n}$ is a basis of $\mathbb{R}_{n}[x]$.
Now, we give results that allow for (fast) computing the coefficients of interpolation polynomials, at the Chebyshev nodes, expressed in the basis $\left(T_{k}\right)_{0 \leqslant k \leqslant n}$.

Section 2.4. Interpolation and approximation, Chebyshev polynomials

Proposition
(Discrete orthogonality.)
(1) We have

$$
\sum_{k=0}^{n} T_{i}\left(\mu_{k}\right) T_{j}\left(\mu_{k}\right)= \begin{cases}0, & i \neq j \\ n+1, & i=j=0 \\ \frac{n+1}{2}, & i=j \neq 0\end{cases}
$$

(2) We have

$$
\sum_{k=0}^{n} T_{i}\left(\nu_{k}\right) T_{j}\left(\nu_{k}\right)= \begin{cases}0, & i \neq j, \\ n, & i=j \in\{0, n\}, \\ \frac{n}{2}, & i=j \notin\{0, n\} .\end{cases}
$$

Section 2.4. Interpolation and approximation, Chebyshev polynomials
\sum^{\prime} denotes that the first term of the sum has to be halved, $\sum^{\prime \prime}$ denotes that the first and the last terms of the sum have to be halved.

Proposition

(1) If $p_{1, n}=\sum_{0 \leqslant i \leqslant n}^{\prime} c_{1, i} T_{i} \in \mathbb{R}_{n}[x]$ interpolates f on the set $\left\{\mu_{k}: 0 \leqslant k \leqslant n\right\}$, then

$$
c_{1, i}=\frac{2}{n+1} \sum_{k=0}^{n} f\left(\mu_{k}\right) T_{i}\left(\mu_{k}\right) .
$$

(2) Likewise, if $p_{2, n}=\sum_{0 \leqslant i \leqslant n}^{\prime \prime} c_{2, i} T_{i}$ interpolates f at $\left\{\nu_{k}: 0 \leqslant k \leqslant n\right\}$, then

$$
c_{2, i}=\frac{2}{n} \sum_{k=0}^{n} f\left(\nu_{k}\right) T_{i}\left(\nu_{k}\right) .
$$

Cost: $O\left(n^{2}\right)$ operations.

Section 2.5. Clenshaw's method for evaluating Chebyshev sums

Given coefficients c_{0}, \ldots, c_{N} and a point t, we would like to compute the sum

$$
\sum_{k=0}^{N} c_{k} T_{k}(t)
$$

Recall that the polynomials T_{k} satisfy $T_{k+2}(x)=2 x T_{k+1}(x)-T_{k}(x)$.

Section 2.5. Clenshaw's method for evaluating Chebyshev sums

Given coefficients c_{0}, \ldots, c_{N} and a point t, we would like to compute the sum

$$
\sum_{k=0}^{N} c_{k} T_{k}(t)
$$

Recall that the polynomials T_{k} satisfy $T_{k+2}(x)=2 x T_{k+1}(x)-T_{k}(x)$.
First idea: use this relation to compute the $T_{k}(t)$ that appear in the sum.

Section 2.5. Clenshaw's method for evaluating Chebyshev sums

Given coefficients c_{0}, \ldots, c_{N} and a point t, we would like to compute the sum

$$
\sum_{k=0}^{N} c_{k} T_{k}(t)
$$

Recall that the polynomials T_{k} satisfy $T_{k+2}(x)=2 x T_{k+1}(x)-T_{k}(x)$.
First idea: use this relation to compute the $T_{k}(t)$ that appear in the sum.
Method is numerically unstable.
The $U_{k}(x)$ satisfy the same recurrence but grows faster: we have

$$
\left\|T_{k}\right\|_{\infty}=1, \quad\left\|U_{k}\right\|_{\infty}=k+1
$$

Section 2.5. Clenshaw's method for evaluating Chebyshev sums

Algorithm 2
Input Chebyshev coefficients c_{0}, \ldots, c_{N}, a point t
Output $\sum_{k=0}^{N} c_{k} T_{k}(t)$
(1) $b_{N+1} \leftarrow 0, b_{N} \leftarrow c_{N}$
(2) for $k=N-1, N-2, \ldots, 1$
(1) $b_{k} \leftarrow 2 t b_{k+1}-b_{k+2}+c_{k}$
(3) return $c_{0}+t b_{1}-b_{2}$

This algorithm runs in $O(N)$ arithmetic operations.

Section 2.6. Computation of the Chebyshev coefficients

How do we compute the c_{k} ?
Assume we use the Chebyshev nodes of the second kind and obtain the result on the Chebyshev basis.

Given y_{0}, \ldots, y_{N}, we are looking for c_{0}, \ldots, c_{N} such that
$p(x)=\sum_{j=0}^{N}{ }^{\prime \prime} c_{j} T_{j}(x)$ satisfies $p\left(\nu_{k}\right)=y_{k}$ for all k.
By discrete orthogonality, we have

$$
c_{j}=\frac{2}{N} \sum_{k=0}^{N} y_{k} T_{k}\left(\nu_{j}\right)
$$

Observe that we have

$$
T_{k}\left(\nu_{j}\right)=\cos \left(j k \frac{\pi}{N}\right)
$$

Section 2.6. Computation of the Chebyshev coefficients

How do we compute the c_{k} ?
Assume we use the Chebyshev nodes of the second kind and obtain the result on the Chebyshev basis.

Given y_{0}, \ldots, y_{N}, we are looking for c_{0}, \ldots, c_{N} such that
$p(x)=\sum_{j=0}^{N}{ }^{\prime \prime} c_{j} T_{j}(x)$ satisfies $p\left(\nu_{k}\right)=y_{k}$ for all k.
By discrete orthogonality, we have

$$
c_{j}=\frac{2}{N} \sum_{k=0}^{N} y_{k} T_{k}\left(\nu_{j}\right)
$$

Observe that we have

$$
T_{k}\left(\nu_{j}\right)=\cos \left(j k \frac{\pi}{N}\right)
$$

DCT: Discrete Cosine Transform. JPEG, MPEG, MP3, etc.

Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

Chapter 2. Orthogonal Polynomials - Chebyshev series

Section 2.1. Orthogonal Polynomials

Let $(a, b) \subset \mathbb{R}$ be an open interval, and let w be a weight function, that is to say $w:(a, b) \rightarrow(0, \infty)$ is a continuous function. We assume

$$
\forall n \in \mathbb{N}, \quad \int_{a}^{b}|x|^{n} w(x) \mathrm{d} x<\infty
$$

Section 2.1. Orthogonal Polynomials

Let $(a, b) \subset \mathbb{R}$ be an open interval, and let w be a weight function, that is to say $w:(a, b) \rightarrow(0, \infty)$ is a continuous function. We assume

$$
\forall n \in \mathbb{N}, \quad \int_{a}^{b}|x|^{n} w(x) \mathrm{d} x<\infty
$$

This is the case, for instance, if (a, b) is bounded and

$$
\int_{a}^{b} w(x) \mathrm{d} x<\infty
$$

Section 2.1. Orthogonal Polynomials

Let

$$
\mathcal{E}(w)=\left\{f \in \mathcal{C}((a, b)):\|f\|_{2}:=\left(\int_{a}^{b} f(x)^{2} w(x) \mathrm{d} x\right)^{1 / 2}<\infty\right\}
$$

Section 2.1. Orthogonal Polynomials

Let

$$
\mathcal{E}(w)=\left\{f \in \mathcal{C}((a, b)):\|f\|_{2}:=\left(\int_{a}^{b} f(x)^{2} w(x) \mathrm{d} x\right)^{1 / 2}<\infty\right\} .
$$

Observe that $\mathbb{R}[x] \subset \mathcal{E}(w)$. The space $\mathcal{E}(w)$ is equipped with an inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) \mathrm{d} x
$$

and $\|\cdot\|_{2}$ is the norm associated to this inner product.

Section 2.1. Orthogonal Polynomials

Definition 1

A family of orthogonal polynomials associated with w is a sequence $\left(p_{n}\right) \in \mathbb{R}[x]^{\mathbb{N}}$ where $\operatorname{deg} p_{k}=k$ for all k, and

$$
i \neq j \quad \Rightarrow \quad\left\langle p_{i}, p_{j}\right\rangle=0
$$

Section 2.1. Orthogonal Polynomials

Definition 1

A family of orthogonal polynomials associated with w is a sequence $\left(p_{n}\right) \in \mathbb{R}[x]^{\mathbb{N}}$ where $\operatorname{deg} p_{k}=k$ for all k, and

$$
i \neq j \quad \Rightarrow \quad\left\langle p_{i}, p_{j}\right\rangle=0
$$

Theorem 2

For any weight w, there exists a family of orthogonal polynomials associated with w. If additionally we request that the p_{k} are all monic, this family is unique.

Section 2.1. Orthogonal Polynomials

Definition 1

A family of orthogonal polynomials associated with w is a sequence $\left(p_{n}\right) \in \mathbb{R}[x]^{\mathbb{N}}$ where $\operatorname{deg} p_{k}=k$ for all k, and

$$
i \neq j \quad \Rightarrow \quad\left\langle p_{i}, p_{j}\right\rangle=0
$$

Theorem 2

For any weight w, there exists a family of orthogonal polynomials associated with w. If additionally we request that the p_{k} are all monic, this family is unique.

Gram-Schmidt orthogonalization process

Section 2.1. Orthogonal Polynomials

Theorem 3

The polynomials $\left(p_{n}\right)_{n \in \mathbb{N}}$ satisfy the recurrence relation

$$
p_{n}(x)=\left(x-\alpha_{n}\right) p_{n-1}(x)-\beta_{n} p_{n-2}(x) \quad(n \geqslant 2)
$$

with

$$
\alpha_{n}=\frac{\left\langle x p_{n-1}, p_{n-1}\right\rangle}{\left\|p_{n-1}\right\|_{2}^{2}}, \quad \beta_{n}=\frac{\left\|p_{n-1}\right\|_{2}^{2}}{\left\|p_{n-2}\right\|_{2}^{2}}
$$

Section 2.1. Orthogonal Polynomials

Example 4

$$
\begin{array}{lll}
(-1,1) & w(x)=\left(1-x^{2}\right)^{-1 / 2} & \begin{array}{l}
\text { Chebyshev polynomials of the first } \\
\text { kind (up to normalization) }
\end{array} \\
(-1,1) & w(x)=1 & \text { Legendre polynomials } \\
(0,+\infty) & w(x)=e^{-x} & \text { Laguerre polynomials } \\
(-\infty, \infty) & w(x)=e^{-x^{2}} & \text { Hermite polynomials }
\end{array}
$$

Exercise

Prove that the first statement of Example 4 is correct.

Section 2.1. Orthogonal Polynomials

Theorem 5

For any weight w and for all n, the polynomial p_{n} has n distinct zeros in (a, b).

Section 2.1. Orthogonal Polynomials

Theorem 6

Let $f \in \mathcal{E}(w), n \in \mathbb{N}$. There exists a unique best $L_{2}(w)$ polynomial approximation in $\mathbb{R}_{n}[x]$ to f, denoted $p_{2, n}$:

$$
\left\|f-p_{2, n}\right\|_{2}=\min _{p \in \mathbb{R}_{n}[x]}\|f-p\|_{2} .
$$

It is characterized by

$$
\forall p \in \mathbb{R}_{n}[x], \quad\left\langle f-p_{2, n}, p\right\rangle=0
$$

Section 2.1. Orthogonal Polynomials

Theorem 6

Let $f \in \mathcal{E}(w), n \in \mathbb{N}$. There exists a unique best $L_{2}(w)$ polynomial approximation in $\mathbb{R}_{n}[x]$ to f, denoted $p_{2, n}$:

$$
\left\|f-p_{2, n}\right\|_{2}=\min _{p \in \mathbb{R}_{n}[x]}\|f-p\|_{2}
$$

It is characterized by

$$
\forall p \in \mathbb{R}_{n}[x], \quad\left\langle f-p_{2, n}, p\right\rangle=0
$$

Exercise

Prove the previous theorem.

Section 2.1. Orthogonal Polynomials

Theorem 7

If (a, b) is bounded, then for all $f \in \mathcal{E}(w)$, we have $p_{2, n} \xrightarrow{\|\cdot\|_{2}} f$ as $n \rightarrow \infty$.

Section 2.2. A little bit of quadrature: Gauss methods

Let w be a weight function over (a, b), and let $f \in \mathcal{C}([a, b])$. We briefly study methods which approximate the integral

$$
\int_{a}^{b} f(x) w(x) \mathrm{d} x
$$

with a sum of the form

$$
\sum_{k=0}^{n} w_{k} f\left(x_{k}\right), \quad w_{k} \in \mathbb{R}, \quad x_{k} \in[a, b] \text { pairwise distinct. }
$$

Section 2.2. A little bit of quadrature: Gauss methods

First of all, if $\ell_{k}(x)=\prod_{\substack{j=0, j \neq k}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}}$, observe that if

$$
p(x)=\sum_{k=0}^{n} f\left(x_{k}\right) \ell_{k}(x) \in \mathbb{R}_{n}[x]
$$

interpolates f at the points x_{0}, \ldots, x_{n}, then our approximation for the integral is equal to $\int_{a}^{b} p(x) w(x) \mathrm{d} x=\sum_{k=0}^{n} w_{k} f\left(x_{k}\right)$ with

$$
w_{k}=\int_{a}^{b} \ell_{k}(x) w(x) \mathrm{d} x \text { for } k=0, \ldots, n .
$$

Section 2.2. A little bit of quadrature: Gauss methods

Theorem 8

There exists a unique choice of the points x_{k} and the weights w_{k} such that, whenever $f \in \mathbb{R}_{2 n+1}[x]$,

$$
\int_{a}^{b} f(x) w(x) \mathrm{d} x=\sum_{k=0}^{n} w_{k} f\left(x_{k}\right)
$$

These points x_{k} belong to (a, b) and are the roots of the $(n+1)$-th orthogonal polynomial associated to w.

