Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

Section 2.4. Interpolation and approximation, Chebyshev polynomials

We have $\deg T_n = \deg U_n = n$ for all $n \in \mathbb{N}$.

Therefore, $\left(T_k\right)_{0\leqslant k\leqslant n}$ is a basis of $\mathbb{R}_n\left[x
ight].$

Now, we give results that allow for (fast) computing the coefficients of interpolation polynomials, at the Chebyshev nodes, expressed in the basis $(T_k)_{0 \leq k \leq n}$.

Section 2.4. Interpolation and approximation, Chebyshev polynomials

Proposition

(Discrete orthogonality.)

We have

$$\sum_{k=0}^{n} T_{i}(\mu_{k}) T_{j}(\mu_{k}) = \begin{cases} 0, & i \neq j, \\ n+1, & i=j=0, \\ \frac{n+1}{2}, & i=j \neq 0. \end{cases}$$

We have

$$\sum_{k=0}^{n} T_{i}(\nu_{k}) T_{j}(\nu_{k}) = \begin{cases} 0, & i \neq j, \\ n, & i = j \in \{0, n\}, \\ \frac{n}{2}, & i = j \notin \{0, n\}. \end{cases}$$

Section 2.4. Interpolation and approximation, Chebyshev polynomials

 \sum' denotes that the first term of the sum has to be halved, \sum'' denotes that the first and the last terms of the sum have to be halved.

Proposition

• If $p_{1,n} = \sum_{0 \le i \le n}' c_{1,i} T_i \in \mathbb{R}_n [x]$ interpolates f on the set $\{\mu_k : 0 \le k \le n\}$, then

$$c_{1,i} = \frac{2}{n+1} \sum_{k=0}^{n} f(\mu_k) T_i(\mu_k).$$

2 Likewise, if p_{2,n} = ∑^{''}_{0≤i≤n} c_{2,i}T_i interpolates f at {ν_k : 0 ≤ k ≤ n}, then

$$c_{2,i} = \frac{2}{n} \sum_{k=0}^{n} f(\nu_k) T_i(\nu_k).$$

Cost: $O(n^2)$ operations.

Given coefficients c_0, \ldots, c_N and a point t, we would like to compute the sum

$$\sum_{k=0}^{N} c_k T_k\left(t\right).$$

Recall that the polynomials T_k satisfy $T_{k+2}(x) = 2xT_{k+1}(x) - T_k(x)$.

Given coefficients c_0, \ldots, c_N and a point t, we would like to compute the sum

$$\sum_{k=0}^{N} c_k T_k\left(t\right).$$

Recall that the polynomials T_k satisfy $T_{k+2}(x) = 2xT_{k+1}(x) - T_k(x)$.

First idea: use this relation to compute the $T_k(t)$ that appear in the sum.

Given coefficients c_0, \ldots, c_N and a point t, we would like to compute the sum

$$\sum_{k=0}^{N} c_k T_k\left(t\right).$$

Recall that the polynomials T_k satisfy $T_{k+2}(x) = 2xT_{k+1}(x) - T_k(x)$.

First idea: use this relation to compute the $T_k(t)$ that appear in the sum.

Method is numerically unstable.

The $U_k(x)$ satisfy the same recurrence but grows faster: we have

$$||T_k||_{\infty} = 1, \qquad ||U_k||_{\infty} = k+1.$$

Algorithm 2

Input Chebyshev coefficients c_0, \ldots, c_N , a point tOutput $\sum_{k=0}^{N} c_k T_k(t)$

•
$$b_{N+1} \leftarrow 0, \ b_N \leftarrow c_N$$

• for $k = N - 1, N - 2, \dots, 1$
• $b_k \leftarrow 2tb_{k+1} - b_{k+2} + c_k$

$$\bigcirc$$
 return $c_0 + tb_1 - b_2$

This algorithm runs in O(N) arithmetic operations.

Section 2.6. Computation of the Chebyshev coefficients

How do we compute the c_k ?

Assume we use the Chebyshev nodes of the second kind and obtain the result on the Chebyshev basis.

Given y_0, \ldots, y_N , we are looking for c_0, \ldots, c_N such that $p(x) = \sum_{j=0}^{N} c_j T_j(x)$ satisfies $p(\nu_k) = y_k$ for all k. By discrete orthogonality, we have

$$c_j = \frac{2}{N} \sum_{k=0}^{N} y_k T_k\left(\nu_j\right).$$

Observe that we have

$$T_k\left(\nu_j\right) = \cos\left(jk\frac{\pi}{N}\right)$$

Section 2.6. Computation of the Chebyshev coefficients

How do we compute the c_k ?

Assume we use the Chebyshev nodes of the second kind and obtain the result on the Chebyshev basis.

Given y_0, \ldots, y_N , we are looking for c_0, \ldots, c_N such that $p(x) = \sum_{j=0}^{N} c_j T_j(x)$ satisfies $p(\nu_k) = y_k$ for all k. By discrete orthogonality, we have

$$c_j = \frac{2}{N} \sum_{k=0}^{N} y_k T_k\left(\nu_j\right).$$

Observe that we have

$$T_k\left(\nu_j\right) = \cos\left(jk\frac{\pi}{N}\right)$$

DCT: Discrete Cosine Transform. JPEG, MPEG, MP3, etc.

Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

Chapter 2. Orthogonal Polynomials - Chebyshev series

Let $(a,b) \subset \mathbb{R}$ be an open interval, and let w be a weight function, that is to say $w: (a,b) \to (0,\infty)$ is a continuous function. We assume

$$\forall n \in \mathbb{N}, \quad \int_{a}^{b} |x|^{n} w(x) \mathrm{d}x < \infty.$$

Let $(a,b) \subset \mathbb{R}$ be an open interval, and let w be a weight function, that is to say $w: (a,b) \to (0,\infty)$ is a continuous function. We assume

$$\forall n \in \mathbb{N}, \quad \int_{a}^{b} |x|^{n} w(x) \mathrm{d}x < \infty.$$

This is the case, for instance, if (a, b) is bounded and

$$\int_{a}^{b} w(x) \mathrm{d}x < \infty.$$

Let

$$\mathcal{E}(w) = \left\{ f \in \mathcal{C}((a,b)) : \|f\|_2 := \left(\int_a^b f(x)^2 w(x) \mathrm{d}x \right)^{1/2} < \infty \right\}.$$

Let

$$\mathcal{E}(w) = \left\{ f \in \mathcal{C}((a,b)) : \|f\|_2 := \left(\int_a^b f(x)^2 w(x) \mathrm{d}x \right)^{1/2} < \infty \right\}.$$

Observe that $\mathbb{R}[x]\subset \mathcal{E}(w).$ The space $\mathcal{E}(w)$ is equipped with an inner product

$$\langle f,g\rangle = \int_{a}^{b} f(x)g(x)w(x)\mathrm{d}x;$$

and $\|\cdot\|_2$ is the norm associated to this inner product.

Definition 1

A family of orthogonal polynomials associated with w is a sequence $(p_n)\in\mathbb{R}[x]^{\mathbb{N}}$ where $\deg p_k=k$ for all k, and

$$i \neq j \quad \Rightarrow \quad \langle p_i, p_j \rangle = 0.$$

Definition 1

A family of orthogonal polynomials associated with w is a sequence $(p_n) \in \mathbb{R}[x]^{\mathbb{N}}$ where $\deg p_k = k$ for all k, and

$$i \neq j \quad \Rightarrow \quad \langle p_i, p_j \rangle = 0.$$

Theorem 2

For any weight w, there exists a family of orthogonal polynomials associated with w. If additionally we request that the p_k are all monic, this family is unique.

Definition 1

A family of orthogonal polynomials associated with w is a sequence $(p_n) \in \mathbb{R}[x]^{\mathbb{N}}$ where $\deg p_k = k$ for all k, and

$$i \neq j \quad \Rightarrow \quad \langle p_i, p_j \rangle = 0.$$

Theorem 2

For any weight w, there exists a family of orthogonal polynomials associated with w. If additionally we request that the p_k are all monic, this family is unique.

Gram-Schmidt orthogonalization process

Theorem 3

The polynomials $(p_n)_{n\in\mathbb{N}}$ satisfy the recurrence relation

$$p_n(x) = (x - \alpha_n)p_{n-1}(x) - \beta_n p_{n-2}(x) \qquad (n \ge 2)$$

with

$$\alpha_n = \frac{\langle xp_{n-1}, p_{n-1} \rangle}{\|p_{n-1}\|_2^2}, \qquad \beta_n = \frac{\|p_{n-1}\|_2^2}{\|p_{n-2}\|_2^2}$$

Example 4		
(-1, 1)	$w(x) = (1 - x^2)^{-1/2}$	Chebyshev polynomials of the first
		kind (up to normalization)
(-1, 1)	w(x) = 1	Legendre polynomials
$(0, +\infty)$	$w(x) = e^{-x}$	Laguerre polynomials
$(-\infty,\infty)$	$w(x) = e^{-x^2}$	Hermite polynomials

Exercise

Prove that the first statement of Example 4 is correct.

Theorem 5

For any weight w and for all n, the polynomial p_n has n distinct zeros in (a, b).

Theorem 6

Let $f \in \mathcal{E}(w)$, $n \in \mathbb{N}$. There exists a unique best $L_2(w)$ polynomial approximation in $\mathbb{R}_n[x]$ to f, denoted $p_{2,n}$:

$$||f - p_{2,n}||_2 = \min_{p \in \mathbb{R}_n[x]} ||f - p||_2.$$

It is characterized by

$$\forall p \in \mathbb{R}_n[x], \quad \langle f - p_{2,n}, p \rangle = 0.$$

Theorem 6

Let $f \in \mathcal{E}(w)$, $n \in \mathbb{N}$. There exists a unique best $L_2(w)$ polynomial approximation in $\mathbb{R}_n[x]$ to f, denoted $p_{2,n}$:

$$||f - p_{2,n}||_2 = \min_{p \in \mathbb{R}_n[x]} ||f - p||_2.$$

It is characterized by

$$\forall p \in \mathbb{R}_n[x], \quad \langle f - p_{2,n}, p \rangle = 0.$$

Exercise

Prove the previous theorem.

Theorem 7

If (a,b) is bounded, then for all $f \in \mathcal{E}(w)$, we have $p_{2,n} \xrightarrow{\|\cdot\|_2} f$ as $n \to \infty$.

Let w be a weight function over (a, b), and let $f \in C([a, b])$. We briefly study methods which approximate the integral

$$\int_{a}^{b} f(x)w(x)\mathrm{d}x$$

with a sum of the form

$$\sum_{k=0}^n w_k f(x_k), \qquad w_k \in \mathbb{R}, \quad x_k \in [a,b] \text{ pairwise distinct}$$

Section 2.2. A little bit of quadrature: Gauss methods

First of all, if
$$\ell_k(x) = \prod_{\substack{j=0,\ j \neq k}}^n \frac{x-x_j}{x_k-x_j}$$
, observe that if

$$p(x) = \sum_{k=0}^{n} f(x_k)\ell_k(x) \in \mathbb{R}_n[x]$$

interpolates f at the points x_0, \ldots, x_n , then our approximation for the integral is equal to $\int_a^b p(x)w(x)dx = \sum_{k=0}^n w_k f(x_k)$ with

$$w_k = \int_a^b \ell_k(x) w(x) \mathrm{d}x$$
 for $k = 0, \dots, n$.

Theorem 8

There exists a unique choice of the points x_k and the weights w_k such that, whenever $f \in \mathbb{R}_{2n+1}[x]$,

$$\int_{a}^{b} f(x)w(x)\mathrm{d}x = \sum_{k=0}^{n} w_{k}f(x_{k}).$$

These points x_k belong to (a, b) and are the roots of the (n + 1)-th orthogonal polynomial associated to w.