
Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
École Normale Supérieure de Lyon, 2023-2024

-1-



Section 2.4. Interpolation and approximation, Chebyshev
polynomials

We have deg Tn = degUn = n for all n ∈ N.

Therefore, (Tk)0⩽k⩽n is a basis of Rn [x] .

Now, we give results that allow for (fast) computing the coefficients of
interpolation polynomials, at the Chebyshev nodes, expressed in the basis
(Tk)0⩽k⩽n.
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Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Proposition

(Discrete orthogonality.)
1 We have

n∑
k=0

Ti (µk)Tj (µk) =

 0, i ̸= j,
n+ 1, i = j = 0,
n+1
2 , i = j ̸= 0.

2 We have

n∑
k=0

Ti (νk)Tj (νk) =

 0, i ̸= j,
n, i = j ∈ {0, n} ,
n
2 , i = j ̸∈ {0, n} .
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Section 2.4. Interpolation and approximation, Chebyshev
polynomials∑′denotes that the first term of the sum has to be halved,

∑′′denotes
that the first and the last terms of the sum have to be halved.

Proposition

1 If p1,n =
∑′

0⩽i⩽n c1,iTi ∈ Rn [x] interpolates f on the
set {µk : 0 ⩽ k ⩽ n}, then

c1,i =
2

n+ 1

n∑
k=0

f (µk)Ti (µk) .

2 Likewise, if p2,n =
∑′′

0⩽i⩽n c2,iTi interpolates f
at {νk : 0 ⩽ k ⩽ n}, then

c2,i =
2

n

n∑
k=0

f (νk)Ti (νk) .

Cost: O(n2) operations.
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Section 2.5. Clenshaw’s method for evaluating Chebyshev
sums

Given coefficients c0, . . . , cN and a point t, we would like to compute the
sum

N∑
k=0

ckTk (t) .

Recall that the polynomials Tk satisfy Tk+2 (x) = 2xTk+1 (x)− Tk (x).

First idea: use this relation to compute the Tk (t) that appear in the sum.

Method is numerically unstable.
The Uk (x) satisfy the same recurrence but grows faster: we have

∥Tk∥∞ = 1, ∥Uk∥∞ = k + 1.
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Section 2.5. Clenshaw’s method for evaluating Chebyshev
sums

Algorithm 2

Input Chebyshev coefficients c0, . . . , cN , a point t
Output

∑N
k=0 ckTk (t)

1 bN+1 ← 0, bN ← cN
2 for k = N − 1, N − 2, . . . , 1

1 bk ← 2tbk+1 − bk+2 + ck

3 return c0 + tb1 − b2

This algorithm runs in O (N) arithmetic operations.
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Section 2.6. Computation of the Chebyshev coefficients

How do we compute the ck?
Assume we use the Chebyshev nodes of the second kind and obtain the
result on the Chebyshev basis.

Given y0, . . . , yN , we are looking for c0, . . . , cN such that
p (x) =

∑N
j=0

′′
cjTj (x) satisfies p (νk) = yk for all k.

By discrete orthogonality, we have

cj =
2

N

N∑
k=0

ykTk (νj) .

Observe that we have

Tk (νj) = cos
(
jk

π

N

)
.

DCT: Discrete Cosine Transform. JPEG, MPEG, MP3, etc.
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Chapter 2. Orthogonal Polynomials - Chebyshev series
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Section 2.1. Orthogonal Polynomials

Let (a, b) ⊂ R be an open interval, and let w be a weight function, that
is to say w : (a, b) → (0,∞) is a continuous function. We assume

∀n ∈ N,
∫ b

a

|x|nw(x)dx < ∞.

This is the case, for instance, if (a, b) is bounded and∫ b

a

w(x)dx < ∞.
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Section 2.1. Orthogonal Polynomials

Let

E(w) =

f ∈ C((a, b)) : ∥f∥2 :=

(∫ b

a

f(x)2w(x)dx

)1/2

< ∞

 .

Observe that R[x] ⊂ E(w). The space E(w) is equipped with an inner
product

⟨f, g⟩ =
∫ b

a

f(x)g(x)w(x)dx;

and ∥ · ∥2 is the norm associated to this inner product.
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Section 2.1. Orthogonal Polynomials

Definition 1
A family of orthogonal polynomials associated with w is a sequence
(pn) ∈ R[x]N where deg pk = k for all k, and

i ̸= j ⇒ ⟨pi, pj⟩ = 0.

Theorem 2
For any weight w, there exists a family of orthogonal polynomials
associated with w. If additionally we request that the pk are all monic,
this family is unique.

Gram-Schmidt orthogonalization process
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Section 2.1. Orthogonal Polynomials

Theorem 3
The polynomials (pn)n∈N satisfy the recurrence relation

pn(x) = (x− αn)pn−1(x)− βnpn−2(x) (n ⩾ 2)

with

αn =
⟨xpn−1, pn−1⟩

∥pn−1∥22
, βn =

∥pn−1∥22
∥pn−2∥22

.
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Section 2.1. Orthogonal Polynomials

Example 4
(−1, 1) w(x) = (1− x2)−1/2 Chebyshev polynomials of the first

kind (up to normalization)
(−1, 1) w(x) = 1 Legendre polynomials
(0,+∞) w(x) = e−x Laguerre polynomials
(−∞,∞) w(x) = e−x2

Hermite polynomials

Exercise
Prove that the first statement of Example 4 is correct.
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Section 2.1. Orthogonal Polynomials

Theorem 5
For any weight w and for all n, the polynomial pn has n distinct zeros
in (a, b).
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Section 2.1. Orthogonal Polynomials

Theorem 6
Let f ∈ E(w), n ∈ N. There exists a unique best L2(w) polynomial
approximation in Rn[x]to f , denoted p2,n:

∥f − p2,n∥2 = min
p∈Rn[x]

∥f − p∥2.

It is characterized by

∀p ∈ Rn[x], ⟨f − p2,n, p⟩ = 0.

Exercise
Prove the previous theorem.
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Section 2.1. Orthogonal Polynomials

Theorem 7

If (a, b) is bounded, then for all f ∈ E(w), we have p2,n
∥·∥2−−→ f as

n → ∞.
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Section 2.2. A little bit of quadrature: Gauss methods

Let w be a weight function over (a, b), and let f ∈ C([a, b]). We briefly
study methods which approximate the integral∫ b

a

f(x)w(x)dx

with a sum of the form
n∑

k=0

wkf(xk), wk ∈ R, xk ∈ [a, b] pairwise distinct.
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Section 2.2. A little bit of quadrature: Gauss methods

First of all, if ℓk(x) =
n∏

j=0,
j ̸=k

x− xj

xk − xj
, observe that if

p(x) =

n∑
k=0

f(xk)ℓk(x) ∈ Rn[x]

interpolates f at the points x0, . . . , xn, then our approximation for the
integral is equal to

∫ b

a
p(x)w(x)dx =

∑n
k=0 wkf(xk) with

wk =

∫ b

a

ℓk(x)w(x)dx for k = 0, . . . , n.
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Section 2.2. A little bit of quadrature: Gauss methods

Theorem 8
There exists a unique choice of the points xk and the weights wk such
that, whenever f ∈ R2n+1[x],∫ b

a

f(x)w(x)dx =

n∑
k=0

wkf(xk).

These points xk belong to (a, b) and are the roots of the (n+ 1)-th
orthogonal polynomial associated to w.
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