Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
Ecole Normale Supérieure de Lyon, 2023-2024

Section 2.2. Best L*> (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)?

Kirchberger (1902))

Let {¢o,...,pn} be a Chebyshev system over [a,b]. Let f € C([a,b]). A
generalized polynomial p = >"}'_, apr is the best approximation (or
minimax approximation) of f iff there exist n + 2 points xg, ..., Tpt1,
a< Ty < << xpr1 < b such that, for all k,

f(zk) —p () = (=1)* (f (xo) = p(20)) = £ | f — Pl oo -

1.

Section 2.2. Best L*> (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)?

Kirchberger (1902))

Let {¢o,...,pn} be a Chebyshev system over [a,b]. Let f € C([a,b]). A
generalized polynomial p = >"}'_, apr is the best approximation (or
minimax approximation) of f iff there exist n + 2 points xg, ..., Tpt1,
a< Ty < << xpr1 < b such that, for all k,

f(zk) —p () = (=1)* (f (xo) = p(20)) = £ | f — Pl oo -

In other words, p = Y}, cupy, is the best approximation if and only if
the error function f — p has n + 2 extrema, all global (of the same
absolute value) and with alternating signs.

1.

Section 2.2. Best L*> (or minimax) approximation

Theorem 8

(La Vallée Poussin) Let f € C([a,b]). Let {po,...,on} be a Chebyshev
system over [a,b], and let p € Spang {@o, ..., ¢n}. If there exist
To < Ty < -+ < Tpt1 Such that p — f alternates at the x;, then

miin\f(:ci) —p ()| < En(f) <IIf —2lloo »

where E,, (f) = infqupan]R{tpi} ||f - q”oo

o9

Section 2.2. Best L*> (or minimax) approximation

Theorem 8

(La Vallée Poussin) Let f € C([a,b]). Let {po,...,on} be a Chebyshev
system over [a,b], and let p € Spang {@o, ..., ¢n}. If there exist
To < Ty < -+ < Tpt1 Such that p — f alternates at the x;, then

miin\f(:ci) —p ()| < En(f) <IIf —2lloo »

where E,, (f) = infqupan]R{tpi} ||f - q”oo

Remark

Let {®o,...,pn} be a Chebyshev system over [a,b]. These statements
remain valid if [a,b] is replaced with any compact subset of R containing
at least n + 2 points.

o9

Section 2.2. Best L™ (or minimax) approximation - Remez'
algorithm

Remez published in 1934 an algorithm to approximate the minimax
polynomial.

o3

Section 2.2. Best L™ (or minimax) approximation - Remez'
algorithm

Input A segment [a, b], a function f € C([a,b]), a Chebyshev
system {¢;}, a tolerance A.
Output An approximation of the best approximation of f on the
system {¢; }.
@ Choose n + 2 points xg < 21 < -+ < Tpyq in [a,b], § < 1, + 0.
@ While § > Ale| do

@ Solve for ap,...,a, and ¢ the linear system

D arer (w5) = f () = (=1)e, j=0,...,n+1,
k=0

2a.

Section 2.2. Best L™ (or minimax) approximation - Remez'

algorithm

Input A segment [a, b], a function f € C([a,b]), a Chebyshev
system {¢;}, a tolerance A.
Output An approximation of the best approximation of f on the
system {¢; }.
@ Choose n + 2 points xg < 21 < -+ < Tpyq in [a,b], § < 1, + 0.
@ While § > Ale| do

@ Solve for ap,...,a, and ¢ the linear system
D awpn (z5) = f(x) = (=1, j=0,...,n+1,
® Choose Tnew € [a,b] such that

D= flloo = P (@new) = f (wnew) |, with p = Zam

Replace one of the z; with Znew, s.t. p — f alternates at
Lo,new, - - - y Ln+1,new- Set 6 = |p (xnew) - f (-Tnew)‘ - | £ ‘ -

2a.

Section 2.2. Best L™ (or minimax) approximation - Remez'

algorithm

Input A segment [a, b], a function f € C([a,b]), a Chebyshev
system {¢;}, a tolerance A.
Output An approximation of the best approximation of f on the
system {¢; }.
@ Choose n + 2 points xg < 21 < -+ < Tpyq in [a,b], § < 1, + 0.
@ While § > Ale| do

@ Solve for ap,...,a, and ¢ the linear system
D awpn (z5) = f(x) = (=1, j=0,...,n+1,
® Choose Tnew € [a,b] such that

D= flloo = P (@new) = f (wnew) |, with p = Zam

Replace one of the z; with Znew, s.t. p — f alternates at
Lo,new, - - - y Ln+1,new- Set 6 = |p (xnew) - f (-Tnew)‘ - | £ ‘ -

© Return p.

24

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

First iteration: «; = —1+25/5, j =0,...,5.

OB

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

0.6 - _
0.4 —

0.2

ok

-0.2 _

-0.4 - -

-0.6 - —

-0.8 —

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

First iteration: «; = —1+25/5, j =0,...,5.
leveled error ¢ = 3.3083e — 04, approximation error = 9.2751e — 04.

O

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

06 /\ |
041 e 4

0.2

ok

-0.2 _

-0.4 - —
-0.6 - —

-0.8 —

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

First iteration: «; = —1+25/5, j =0,...,5.
leveled error ¢ = 3.3083e — 04, approximation error = 9.2751e — 04.

O

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

0.6 - _

0.4

02 ||

oL -

02k -

-0.4 —

-0.6 - —

08— -

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Second iteration:
leveled error ¢ = 5.4083¢e — 04, approximation error = 5.6350e — 04.

O

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

0.6 - - _

0.4

02 ||

oL -

02k -

-0.4 —

-0.6 - —

-0.8 —

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Second iteration:
leveled error ¢ = 5.4083¢e — 04, approximation error = 5.6350e — 04.

O

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

0.6 - ,

0.4

02 |

oL -

02k -

-0.4 —

-0.6 —

-0.8 —

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Third iteration:
leveled error ¢ = 5.4665¢ — 04, approximation error = 5.4670e — 04.

O

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

0.6 - ,

0.4

02 |

oL -

02k -

-0.4 —

-0.6 —

-0.8 —

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Third iteration:
leveled error ¢ = 5.4665¢ — 04, approximation error = 5.4670e — 04.

O

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

0.6 - ,

0.4

02 |

oL -

02k -

-0.4 —

-0.6 —

-0.8 —

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fourth iteration:
leveled error ¢ = 5.4667¢ — 04, approximation error = 5.4667¢ — 04.

O

Section 2.2. Remez' algorithm, an example (Silviu-loan
Filip)

Degree-4 minimax approximation to exp over [—1, 1]

1 x10~*

0.8 —

0.6 - ,

0.4

02 |

oL -

02k -

-0.4 —

-0.6 —

-0.8 —

-1 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fourth iteration:
leveled error ¢ = 5.4667¢ — 04, approximation error = 5.4667¢ — 04.

O

Section 2.2. Best L*> (or minimax) approximation

Theorem 9

Let pi, denote the value of p after k loop turns, and let p* be such that
E, (f) = ||f —p*||. There exists 6 € (0,1) such that
lpx = p*|l = O (6).

Under mild regularity assumptions, the bound O (6*) can in fact be
improved to O(62") (Veidinger, 1960).

26

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct z, ..., 2, € [a,b] and
values vq, ..., y, € R, compute

p € R[z], s.t. p(x;) = y;.

If f€C([a,b]), consider y; = f(x;) fori =0,..., n.

o7

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct z, ..., 2, € [a,b] and
values vq, ..., y, € R, compute

p € R[z], s.t. p(x;) = y;.

If f€C([a,b]), consider y; = f(x;) fori =0,..., n.

Natural to focus on techniques for computing these interpolants:

@ sometimes a finite number of values is the only information we have
on the function,

o7

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct z, ..., 2, € [a,b] and
values vq, ..., y, € R, compute
p € Rlz], s.it. p(z:) = .

If f€C([a,b]), consider y; = f(x;) fori =0,..., n.

Natural to focus on techniques for computing these interpolants:

@ sometimes a finite number of values is the only information we have
on the function,

@ Step 2.a of Remez’ algorithm requires an efficient interpolation
process,

o7

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct z, ..., 2, € [a,b] and
values vq, ..., y, € R, compute

p € R[z], s.t. p(x;) = y;.

If f€C([a,b]), consider y; = f(x;) fori =0,..., n.

Natural to focus on techniques for computing these interpolants:

@ sometimes a finite number of values is the only information we have
on the function,

@ Step 2.a of Remez’ algorithm requires an efficient interpolation
process,

@ Theorem 6 shows that, for all n, there exists
a<z9<z1 <--<z,<b such that f(z;) = p*(2;) for
1 =0,...,n, where p* is the minimax approximation of f: the
polynomial p* is an interpolation polynomial of f.

o7

Section 2.3. Polynomial Interpolation

Let A be a commutative ring (with unity). Given pairwise distinct
Zoy...,Tn € Aand yo,...,yn € A, find p € A, [x] such that p(z;) = y;
for all i. Write p =", axa®. It can be restated as

V.a=y

where V is a Vandermonde matrix. If det V is invertible, there is a
unique solution.

o8

Section 2.3. Polynomial Interpolation

Let A be a commutative ring (with unity). Given pairwise distinct
Zoy...,Tn € Aand yo,...,yn € A, find p € A, [x] such that p(z;) = y;
for all i. Write p =", axa®. It can be restated as

V.a=y

where V is a Vandermonde matrix. If det V is invertible, there is a
unique solution.

Here we assume A = R. If the x; are pairwise distinct, there is a unique
solution.

o8

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct xg,...,x, € R and yg,...,y, € R,
find p =", axz® € R,, [x] such that p (z;) = y; for all i i.e.

V.a=y

where V' is a Vandermonde matrix.

_20.

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct xg,...,x, € R and yg,...,y, € R,
find p =", axz® € R,, [x] such that p (z;) = y; for all i i.e.

V.wa=y
where V' is a Vandermonde matrix.

We could invert this system using standard linear algebra algorithms.
This takes O (n3) operations using Gaussian elimination.

_20.

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct xg,...,x, € R and yg,...,y, € R,
find p =", axz® € R,, [x] such that p (z;) = y; for all i i.e.

V.wa=y
where V' is a Vandermonde matrix.

We could invert this system using standard linear algebra algorithms.
This takes O (n3) operations using Gaussian elimination.

In theory, best known complexity bound: O (n”) where 6 ~ 2.3728596
[Alman and Williams, 2021].

_20.

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct xg,...,x, € R and yg,...,y, € R,
find p =", axz® € R,, [x] such that p (z;) = y; for all i i.e.

V.wa=y
where V' is a Vandermonde matrix.

We could invert this system using standard linear algebra algorithms.
This takes O (n3) operations using Gaussian elimination.

In theory, best known complexity bound: O (n”) where 6 ~ 2.3728596
[Alman and Williams, 2021].

In practice, Strassen's algorithm: cost of O (nlogz 7) operations,
log, 7 = 2.8073.

_20.

Section 2.3. Polynomial Interpolation - Linear System
Solving

There are issues with this approach, though:

@ the problem is ill-conditioned: a small perturbation on the y; leads
to a significant perturbation of the solution.

-30-

Section 2.3. Polynomial Interpolation - Linear System
Solving

There are issues with this approach, though:

@ the problem is ill-conditioned: a small perturbation on the y; leads
to a significant perturbation of the solution.

@ we can do better from the complexity point of view: O (n?) or even

O(nlog®™ n) in general, O (nlogn) if the z; are so-called
Chebyshev nodes,

-30-

Section 2.3. Polynomial interpolation
monomial basis

Evaluation cost of p(z) = Y"}_, arz”.

. Evaluation in the

31

Section 2.3. Polynomial interpolation. Evaluation in the
monomial basis

Evaluation cost of p(z) = Y"}_, arz”.
Horner's method, which relies on the writing
p(x) = (- (((anz + apn—1)x + an—2)x + an—3) -)x + ag,

yields a O(n) complexity.

31

Section 2.3. Polynomial interpolation: divided differences

The divided-difference method.

Newton's divided-difference method: compute interpolation polynomials
incrementally.

39

Section 2.3. Polynomial interpolation: divided differences

The divided-difference method.

Newton's divided-difference method: compute interpolation polynomials
incrementally.

Let pr € Ry [x] be such that py (z;) = y; for 0 < i < k < n, and write

Prt1 (2) = pr () + ar41 (2 — 20) -+ (2 — 2k) -

39

Section 2.3. Polynomial interpolation: divided differences

The divided-difference method.

Newton's divided-difference method: compute interpolation polynomials
incrementally.

Let pr € Ry [x] be such that py (z;) = y; for 0 < i < k < n, and write

Prt1 (2) = pr () + ar41 (2 — 20) -+ (2 — 2k) -

Given yo, ..., yk, we denote by [yo, ..., yx| the corresponding aj: Then,
we can compute ag using the relation

Yty s Yre+1] — [Yo,-- - Yk
[yOa"'ayk+1]:[+] []
Tk41 — To

39

Section 2.3. Polynomial Interpolation: divided differences

Given yo, ..., Yk, we denote by [y, ..., yx] the corresponding ay: Then,
we can compute ay, using the relation

_ [y17"'7yk+1] — [3/07~-~;yk]
[y()a"'ayk-‘rl] - .
Tr+1 — To

This leads to a tree of the following shape.
(Yo --- yn]
(40, s Yn—1] (Y1, Yl
[yl =y [n]=w [Yn] = yn

Hence, the cost for computing the coefficients is in O(n?) operations.

33

Section 2.3. Polynomial Interpolation: divided differences

The evaluation cost at a given point z is in O (n) operations in R: we
can adapt Horner's scheme as

p(2) = (- (((an(z = 2n 1) + an-1)(2 = Tn2)
+ an—2)(z - l’n—3) + an—3) T)(Z - IO) + ao.

34

Section 2.3. Polynomial interpolation: Lagrange
interpolation

Lagrange’s Formula.

Forall j =0,..., n, let

4 (=) =] Tk

- Tj — Tk
k#j "

Then we have deg¢; =n and ¢; (z;) = 0; ; for all 0 < 4,5 < n.

Section 2.3. Polynomial interpolation: Lagrange
interpolation

Lagrange’s Formula.

Forall j =0,..., n, let

4 (=) =] T

bty 1 T
Then we have deg¢; =n and ¢; (z;) = 0; ; for all 0 < 4,5 < n.

{€;}o<j<n is basis of Ry, [z].

3B

Section 2.3. Polynomial interpolation: Lagrange
interpolation

Lagrange’s Formula.

Forall j =0,..., n, let

by T T
Then we have deg¢; =n and ¢; (z;) = 0; ; for all 0 < 4,5 < n.
{€;}o<j<n is basis of Ry, [z].

The interpolation polynomial p:
n
p(x)=>> yili (x).
i=0

Thus, writing the interpolation polynomial on the Lagrange basis is
straightforward.

Section 2.3. Polynomial Interpolation - Lagrange Formula

Let p(z) = > i o vili (2).
Evaluation cost?
Naively, computing ¢; (z) costs (say) 2n subtractions,

2n + 1 multiplications and 1 division.

The total cost is O (n?) operations in R.

36

Section 2.3. Polynomial Interpolation - Lagrange Formula

But we can also write
=W(x S z) = T — T;).
p(x) = W()2 ey W@=Ile-w)

Assuming the W’ (x;) are precomputed, the cost of evaluating p (z) using
this formula is only O (n) arithmetical operations.

37

Section 2.3. Polynomial Interpolation - Lagrange Formula

But we can also write

pl)=W@)) (_;’W W) =L@ -).

=0

Assuming the W’ (x;) are precomputed, the cost of evaluating p (z) using
this formula is only O (n) arithmetical operations.

Evaluation can be a tricky issue: not only a problem of speed but also of
numerical stability. The notion of "barycentric Lagrange interpolation” is
quite relevant regarding these stability issues (see Trefethen's
“Approximation Theory and Approximation Practice”).

37

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

How useful is interpolation for our initial L>° approximation problem?

38

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

How useful is interpolation for our initial L>° approximation problem?

It turns out that the choice of the points is critical. The more points, the
better?

38

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Exercise

Using your computer algebra system of choice, interpolate the function

A G
frw 1+ 5z2

at the points —1 + % 0< k<n, forn=10,15,...,30. Compare
with f on [—1,1].

-30.

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Exercise

Using your computer algebra system of choice, interpolate the function

A G
frw 1+ 5z2

at the points —1 + % 0< k<n, forn=10,15,...,30. Compare
with f on [—1,1].

In short: never use equidistant points when approximating a function by
interpolation!

-30.

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

(Faber)
For each n, let a system of n+ 1 distinct nodes 5[(]"), e e [a,b].

Then for some f € C([a,b]), the sequence of errors (||f — Pnl|oo)nen is
unbounded, where p,, € R, [x] denote the polynomial which interpolates

f at theﬁén),..., 7(1").

_40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

(Faber)
For each n, let a system of n+ 1 distinct nodes 5[(]"), e e [a,b].

Then for some f € C([a,b]), the sequence of errors (||f — Pnl|oo)nen is
unbounded, where p,, € R, [x] denote the polynomial which interpolates
f at the 5(()”), e 7(1").

How depressing!

_40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

(Faber)
For each n, let a system of n+ 1 distinct nodes 5[(]"), e e [a,b].

Then for some f € C([a,b]), the sequence of errors (||f — Pnl|oo)nen is
unbounded, where p,, € R, [x] denote the polynomial which interpolates

f at theﬁén),..., 7(1").

How depressing!
Hmmm... Really?

_40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

(Faber)
For each n, let a system of n+ 1 distinct nodes 5[(]"), e e [a,b].

Then for some f € C([a,b]), the sequence of errors (||f — Pnl|oo)nen is
unbounded, where p,, € R, [x] denote the polynomial which interpolates

f at theﬁén),..., 7(1").

How depressing!
Hmmm... Really?
There is always hope!

_40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Theorem 10

Leta<xzg<- - <m, <b, and let f € C"*1 ([a,b]). Let p € Ry, [x] be
such that f (z;) = p(z;) for all i. Then, for all = € [a,b], there exists
&z € (a,b) such that

(nt1) "
f(x)p(:c)mW(x), W (@) =[] (@ - a2).
’ i=0

-4a1-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Search for families of x; which make ||[IW{| as small as possible.

4>

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Search for families of x; which make ||[IW{| as small as possible.
Assume [a, b] = [—1, 1]. The n-th Chebyshev polynomial of the first kind

is defined by
T, (cost) = cos (nt) ,Vt € [0,2n7].

The T, can also be defined by

To(z) =1,T1 (z) = 2, Thy2 () = 22T 41 () — T, (z) ,YVn € N.

4>

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

The minimum value of the set
{IPlloo 1,1y : P € R [2] ,deg P = n,lc (p) = 1}

is uniquely attained for T, /2"~1 and is therefore equal to 27" +1.

A3

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Forcing W (z) = 27T}, 11 (x) leads to the interpolation points

_ 2k+1)m _
uk—cos(2(n+1) ,k=0,...,n,

called the Chebyshev nodes of the first kind.

_AA4-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Another important family is that of Chebyshev polynomials of the second
kind U,, (x), defined by

sin((n+ 1) x) .

U, (cosz) = S0 (2)

They can also be defined by
Up () =1,U; (x) = 22, Upyo () = 22Uy 1 (x) — Uy, (2) ,Vn € N.

For all n > 0, we have %Tn =nU,_1.

_AE-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

So the extrema of T}, 41 are —1, 1 and the zeros of U, that is,

T
uk:cos<),k:07...,n,
n

called the Chebyshev nodes of the second kind.

With W (z) = 27"+ (1 — 22) Up—1 (2), we have |||, < 27"

46—

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

We have degT,, = degU,, = n for all n € N.

Therefore, (T))o<r<y,, is @ basis of R, [z].

A7

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

We have degT,, = degU,, = n for all n € N.
Therefore, (T))o<r<y,, is @ basis of R, [z].
Now, we give results that allow for (fast) computing the coefficients of

interpolation polynomials, at the Chebyshev nodes, expressed in the basis
(Tk)o<kn

A7

