
Approximation Theory and Proof Assistants:
Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale
École Normale Supérieure de Lyon, 2023-2024

-1-

Section 2.2. Best L∞ (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)?
Kirchberger (1902))

Let {φ0, . . . , φn} be a Chebyshev system over [a, b]. Let f ∈ C ([a, b]). A
generalized polynomial p =

∑n
k=0 αkφk is the best approximation (or

minimax approximation) of f iff there exist n+ 2 points x0, . . . , xn+1,
a ⩽ x0 < x1 < · · · < xn+1 ⩽ b such that, for all k,

f (xk)− p (xk) = (−1)k (f (x0)− p (x0)) = ±∥f − p∥∞ .

In other words, p =
∑n

k=0 αkφk is the best approximation if and only if
the error function f − p has n+ 2 extrema, all global (of the same
absolute value) and with alternating signs.

-21-

Section 2.2. Best L∞ (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)?
Kirchberger (1902))

Let {φ0, . . . , φn} be a Chebyshev system over [a, b]. Let f ∈ C ([a, b]). A
generalized polynomial p =

∑n
k=0 αkφk is the best approximation (or

minimax approximation) of f iff there exist n+ 2 points x0, . . . , xn+1,
a ⩽ x0 < x1 < · · · < xn+1 ⩽ b such that, for all k,

f (xk)− p (xk) = (−1)k (f (x0)− p (x0)) = ±∥f − p∥∞ .

In other words, p =
∑n

k=0 αkφk is the best approximation if and only if
the error function f − p has n+ 2 extrema, all global (of the same
absolute value) and with alternating signs.

-21-

Section 2.2. Best L∞ (or minimax) approximation

Theorem 8
(La Vallée Poussin) Let f ∈ C ([a, b]). Let {φ0, . . . , φn} be a Chebyshev
system over [a, b], and let p ∈ SpanR {φ0, . . . , φn}. If there exist
x0 < x1 < · · · < xn+1 such that p− f alternates at the xi, then

min
i
|f (xi)− p (xi)| ⩽ En (f) ⩽ ∥f − p∥∞ ,

where En (f) = infq∈Span
R
{φi} ∥f − q∥∞.

Remark
Let {φ0, . . . , φn} be a Chebyshev system over [a, b]. These statements
remain valid if [a, b] is replaced with any compact subset of R containing
at least n+ 2 points.

-22-

Section 2.2. Best L∞ (or minimax) approximation

Theorem 8
(La Vallée Poussin) Let f ∈ C ([a, b]). Let {φ0, . . . , φn} be a Chebyshev
system over [a, b], and let p ∈ SpanR {φ0, . . . , φn}. If there exist
x0 < x1 < · · · < xn+1 such that p− f alternates at the xi, then

min
i
|f (xi)− p (xi)| ⩽ En (f) ⩽ ∥f − p∥∞ ,

where En (f) = infq∈Span
R
{φi} ∥f − q∥∞.

Remark
Let {φ0, . . . , φn} be a Chebyshev system over [a, b]. These statements
remain valid if [a, b] is replaced with any compact subset of R containing
at least n+ 2 points.

-22-

Section 2.2. Best L∞ (or minimax) approximation - Remez’
algorithm

Remez published in 1934 an algorithm to approximate the minimax
polynomial.

-23-

Section 2.2. Best L∞ (or minimax) approximation - Remez’
algorithm

Input A segment [a, b], a function f ∈ C ([a, b]), a Chebyshev
system {φi}, a tolerance ∆.

Output An approximation of the best approximation of f on the
system {φi}.

1 Choose n+ 2 points x0 < x1 < · · · < xn+1 in [a, b], δ ← 1, ε← 0.
2 While δ ⩾ ∆ |ε| do

a. Solve for a0, . . . , an and ε the linear system
n∑

k=0

akφk (xj)− f (xj) = (−1)j ε, j = 0, . . . , n+ 1.

b. Choose xnew ∈ [a, b] such that

∥p− f∥∞ = |p (xnew)− f (xnew) |, with p =

n∑
k=0

akφk.

Replace one of the xi with xnew, s.t. p− f alternates at
x0,new, . . . , xn+1,new. Set δ = |p (xnew)− f (xnew)| − | ε | .

3 Return p.

-24-

Section 2.2. Best L∞ (or minimax) approximation - Remez’
algorithm

Input A segment [a, b], a function f ∈ C ([a, b]), a Chebyshev
system {φi}, a tolerance ∆.

Output An approximation of the best approximation of f on the
system {φi}.

1 Choose n+ 2 points x0 < x1 < · · · < xn+1 in [a, b], δ ← 1, ε← 0.
2 While δ ⩾ ∆ |ε| do

a. Solve for a0, . . . , an and ε the linear system
n∑

k=0

akφk (xj)− f (xj) = (−1)j ε, j = 0, . . . , n+ 1.

b. Choose xnew ∈ [a, b] such that

∥p− f∥∞ = |p (xnew)− f (xnew) |, with p =

n∑
k=0

akφk.

Replace one of the xi with xnew, s.t. p− f alternates at
x0,new, . . . , xn+1,new. Set δ = |p (xnew)− f (xnew)| − | ε | .

3 Return p.

-24-

Section 2.2. Best L∞ (or minimax) approximation - Remez’
algorithm

Input A segment [a, b], a function f ∈ C ([a, b]), a Chebyshev
system {φi}, a tolerance ∆.

Output An approximation of the best approximation of f on the
system {φi}.

1 Choose n+ 2 points x0 < x1 < · · · < xn+1 in [a, b], δ ← 1, ε← 0.
2 While δ ⩾ ∆ |ε| do

a. Solve for a0, . . . , an and ε the linear system
n∑

k=0

akφk (xj)− f (xj) = (−1)j ε, j = 0, . . . , n+ 1.

b. Choose xnew ∈ [a, b] such that

∥p− f∥∞ = |p (xnew)− f (xnew) |, with p =

n∑
k=0

akφk.

Replace one of the xi with xnew, s.t. p− f alternates at
x0,new, . . . , xn+1,new. Set δ = |p (xnew)− f (xnew)| − | ε | .

3 Return p.
-24-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

First iteration: xj = −1 + 2j/5, j = 0, . . . , 5.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

First iteration: xj = −1 + 2j/5, j = 0, . . . , 5.
leveled error ε = 3.3083e− 04, approximation error = 9.2751e− 04.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

First iteration: xj = −1 + 2j/5, j = 0, . . . , 5.
leveled error ε = 3.3083e− 04, approximation error = 9.2751e− 04.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

Second iteration:
leveled error ε = 5.4083e− 04, approximation error = 5.6350e− 04.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

Second iteration:
leveled error ε = 5.4083e− 04, approximation error = 5.6350e− 04.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

Third iteration:
leveled error ε = 5.4665e− 04, approximation error = 5.4670e− 04.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

Third iteration:
leveled error ε = 5.4665e− 04, approximation error = 5.4670e− 04.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

Fourth iteration:
leveled error ε = 5.4667e− 04, approximation error = 5.4667e− 04.

-25-

Section 2.2. Remez’ algorithm, an example (Silviu-Ioan
Filip)

Degree-4 minimax approximation to exp over [−1, 1]

Fourth iteration:
leveled error ε = 5.4667e− 04, approximation error = 5.4667e− 04.

-25-

Section 2.2. Best L∞ (or minimax) approximation

Theorem 9
Let pk denote the value of p after k loop turns, and let p∗ be such that
En (f) = ∥f − p∗∥. There exists θ ∈ (0, 1) such that
∥pk − p∗∥ = O

(
θk
)
.

Under mild regularity assumptions, the bound O
(
θk
)

can in fact be
improved to O(θ2

k

) (Veidinger, 1960).

-26-

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct x0, . . . , xn ∈ [a, b] and
values y0, . . . , yn ∈ R, compute

p ∈ R[x], s.t. p (xi) = yi.

If f ∈ C ([a, b]), consider yi = f(xi) for i = 0, . . . , n.

Natural to focus on techniques for computing these interpolants:
sometimes a finite number of values is the only information we have
on the function,
Step 2.a of Remez’ algorithm requires an efficient interpolation
process,
Theorem 6 shows that, for all n, there exists
a ⩽ z0 < z1 < · · · < zn ⩽ b such that f (zi) = p∗ (zi) for
i = 0, . . . , n, where p∗ is the minimax approximation of f : the
polynomial p∗ is an interpolation polynomial of f .

-27-

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct x0, . . . , xn ∈ [a, b] and
values y0, . . . , yn ∈ R, compute

p ∈ R[x], s.t. p (xi) = yi.

If f ∈ C ([a, b]), consider yi = f(xi) for i = 0, . . . , n.

Natural to focus on techniques for computing these interpolants:
sometimes a finite number of values is the only information we have
on the function,

Step 2.a of Remez’ algorithm requires an efficient interpolation
process,
Theorem 6 shows that, for all n, there exists
a ⩽ z0 < z1 < · · · < zn ⩽ b such that f (zi) = p∗ (zi) for
i = 0, . . . , n, where p∗ is the minimax approximation of f : the
polynomial p∗ is an interpolation polynomial of f .

-27-

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct x0, . . . , xn ∈ [a, b] and
values y0, . . . , yn ∈ R, compute

p ∈ R[x], s.t. p (xi) = yi.

If f ∈ C ([a, b]), consider yi = f(xi) for i = 0, . . . , n.

Natural to focus on techniques for computing these interpolants:
sometimes a finite number of values is the only information we have
on the function,
Step 2.a of Remez’ algorithm requires an efficient interpolation
process,

Theorem 6 shows that, for all n, there exists
a ⩽ z0 < z1 < · · · < zn ⩽ b such that f (zi) = p∗ (zi) for
i = 0, . . . , n, where p∗ is the minimax approximation of f : the
polynomial p∗ is an interpolation polynomial of f .

-27-

Section 2.3. Polynomial Interpolation

Interpolation problem: given pairwise distinct x0, . . . , xn ∈ [a, b] and
values y0, . . . , yn ∈ R, compute

p ∈ R[x], s.t. p (xi) = yi.

If f ∈ C ([a, b]), consider yi = f(xi) for i = 0, . . . , n.

Natural to focus on techniques for computing these interpolants:
sometimes a finite number of values is the only information we have
on the function,
Step 2.a of Remez’ algorithm requires an efficient interpolation
process,
Theorem 6 shows that, for all n, there exists
a ⩽ z0 < z1 < · · · < zn ⩽ b such that f (zi) = p∗ (zi) for
i = 0, . . . , n, where p∗ is the minimax approximation of f : the
polynomial p∗ is an interpolation polynomial of f .

-27-

Section 2.3. Polynomial Interpolation

Let A be a commutative ring (with unity). Given pairwise distinct
x0, . . . , xn ∈ A and y0, . . . , yn ∈ A, find p ∈ An [x] such that p (xi) = yi
for all i. Write p =

∑
k akx

k. It can be restated as

V · a = y

where V is a Vandermonde matrix. If detV is invertible, there is a
unique solution.

Here we assume A = R. If the xi are pairwise distinct, there is a unique
solution.

-28-

Section 2.3. Polynomial Interpolation

Let A be a commutative ring (with unity). Given pairwise distinct
x0, . . . , xn ∈ A and y0, . . . , yn ∈ A, find p ∈ An [x] such that p (xi) = yi
for all i. Write p =

∑
k akx

k. It can be restated as

V · a = y

where V is a Vandermonde matrix. If detV is invertible, there is a
unique solution.

Here we assume A = R. If the xi are pairwise distinct, there is a unique
solution.

-28-

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct x0, . . . , xn ∈ R and y0, . . . , yn ∈ R,
find p =

∑
k akx

k ∈ Rn [x] such that p (xi) = yi for all i i.e.

V · a = y

where V is a Vandermonde matrix.

We could invert this system using standard linear algebra algorithms.
This takes O

(
n3

)
operations using Gaussian elimination.

In theory, best known complexity bound: O
(
nθ

)
where θ ≈ 2.3728596

[Alman and Williams, 2021].

In practice, Strassen’s algorithm: cost of O
(
nlog2 7

)
operations,

log2 7 ≈ 2.8073.

-29-

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct x0, . . . , xn ∈ R and y0, . . . , yn ∈ R,
find p =

∑
k akx

k ∈ Rn [x] such that p (xi) = yi for all i i.e.

V · a = y

where V is a Vandermonde matrix.

We could invert this system using standard linear algebra algorithms.
This takes O

(
n3

)
operations using Gaussian elimination.

In theory, best known complexity bound: O
(
nθ

)
where θ ≈ 2.3728596

[Alman and Williams, 2021].

In practice, Strassen’s algorithm: cost of O
(
nlog2 7

)
operations,

log2 7 ≈ 2.8073.

-29-

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct x0, . . . , xn ∈ R and y0, . . . , yn ∈ R,
find p =

∑
k akx

k ∈ Rn [x] such that p (xi) = yi for all i i.e.

V · a = y

where V is a Vandermonde matrix.

We could invert this system using standard linear algebra algorithms.
This takes O

(
n3

)
operations using Gaussian elimination.

In theory, best known complexity bound: O
(
nθ

)
where θ ≈ 2.3728596

[Alman and Williams, 2021].

In practice, Strassen’s algorithm: cost of O
(
nlog2 7

)
operations,

log2 7 ≈ 2.8073.

-29-

Section 2.3. Polynomial Interpolation - Linear System
Solving

Given pairwise distinct x0, . . . , xn ∈ R and y0, . . . , yn ∈ R,
find p =

∑
k akx

k ∈ Rn [x] such that p (xi) = yi for all i i.e.

V · a = y

where V is a Vandermonde matrix.

We could invert this system using standard linear algebra algorithms.
This takes O

(
n3

)
operations using Gaussian elimination.

In theory, best known complexity bound: O
(
nθ

)
where θ ≈ 2.3728596

[Alman and Williams, 2021].

In practice, Strassen’s algorithm: cost of O
(
nlog2 7

)
operations,

log2 7 ≈ 2.8073.

-29-

Section 2.3. Polynomial Interpolation - Linear System
Solving

There are issues with this approach, though:

the problem is ill-conditioned: a small perturbation on the yi leads
to a significant perturbation of the solution.

we can do better from the complexity point of view: O
(
n2

)
or even

O(n logO(1) n) in general, O (n log n) if the xi are so-called
Chebyshev nodes;

-30-

Section 2.3. Polynomial Interpolation - Linear System
Solving

There are issues with this approach, though:

the problem is ill-conditioned: a small perturbation on the yi leads
to a significant perturbation of the solution.

we can do better from the complexity point of view: O
(
n2

)
or even

O(n logO(1) n) in general, O (n log n) if the xi are so-called
Chebyshev nodes;

-30-

Section 2.3. Polynomial interpolation. Evaluation in the
monomial basis

Evaluation cost of p(x) =
∑n

k=0 akx
k.

Horner’s method, which relies on the writing

p(x) = (· · · (((anx+ an−1)x+ an−2)x+ an−3) · · ·)x+ a0,

yields a O(n) complexity.

-31-

Section 2.3. Polynomial interpolation. Evaluation in the
monomial basis

Evaluation cost of p(x) =
∑n

k=0 akx
k.

Horner’s method, which relies on the writing

p(x) = (· · · (((anx+ an−1)x+ an−2)x+ an−3) · · ·)x+ a0,

yields a O(n) complexity.

-31-

Section 2.3. Polynomial interpolation: divided differences

The divided-difference method.

Newton’s divided-difference method: compute interpolation polynomials
incrementally.

Let pk ∈ Rk [x] be such that pk (xi) = yi for 0 ⩽ i ⩽ k < n, and write

pk+1 (x) = pk (x) + ak+1 (x− x0) · · · (x− xk) .

Given y0, . . . , yk, we denote by [y0, . . . , yk] the corresponding ak: Then,
we can compute ak using the relation

[y0, . . . , yk+1] =
[y1, . . . , yk+1]− [y0, . . . , yk]

xk+1 − x0
.

-32-

Section 2.3. Polynomial interpolation: divided differences

The divided-difference method.

Newton’s divided-difference method: compute interpolation polynomials
incrementally.

Let pk ∈ Rk [x] be such that pk (xi) = yi for 0 ⩽ i ⩽ k < n, and write

pk+1 (x) = pk (x) + ak+1 (x− x0) · · · (x− xk) .

Given y0, . . . , yk, we denote by [y0, . . . , yk] the corresponding ak: Then,
we can compute ak using the relation

[y0, . . . , yk+1] =
[y1, . . . , yk+1]− [y0, . . . , yk]

xk+1 − x0
.

-32-

Section 2.3. Polynomial interpolation: divided differences

The divided-difference method.

Newton’s divided-difference method: compute interpolation polynomials
incrementally.

Let pk ∈ Rk [x] be such that pk (xi) = yi for 0 ⩽ i ⩽ k < n, and write

pk+1 (x) = pk (x) + ak+1 (x− x0) · · · (x− xk) .

Given y0, . . . , yk, we denote by [y0, . . . , yk] the corresponding ak: Then,
we can compute ak using the relation

[y0, . . . , yk+1] =
[y1, . . . , yk+1]− [y0, . . . , yk]

xk+1 − x0
.

-32-

Section 2.3. Polynomial Interpolation: divided differences

Given y0, . . . , yk, we denote by [y0, . . . , yk] the corresponding ak: Then,
we can compute ak using the relation

[y0, . . . , yk+1] =
[y1, . . . , yk+1]− [y0, . . . , yk]

xk+1 − x0
.

This leads to a tree of the following shape.

[y0,	 , yn]

[y0,	 , yn−1]

	

[y0] = y0 [y1] = y1

	

[y1,	 , yn]

	 	

[yn] = yn

Hence, the cost for computing the coefficients is in O(n2) operations.

-33-

Section 2.3. Polynomial Interpolation: divided differences

The evaluation cost at a given point z is in O (n) operations in R: we
can adapt Horner’s scheme as

p(z) = (· · · (((an(z − xn−1) + an−1)(z − xn−2)

+ an−2)(z − xn−3) + an−3) · · ·)(z − x0) + a0.

-34-

Section 2.3. Polynomial interpolation: Lagrange
interpolation

Lagrange’s Formula.

For all j = 0, . . . , n, let

ℓj (x) =
∏
k ̸=j

x− xk

xj − xk
.

Then we have deg ℓj = n and ℓj (xi) = δi,j for all 0 ⩽ i, j ⩽ n.

{ℓj}0⩽j⩽n is basis of Rn [x].

The interpolation polynomial p:

p (x) =

n∑
i=0

yiℓi (x) .

Thus, writing the interpolation polynomial on the Lagrange basis is
straightforward.

-35-

Section 2.3. Polynomial interpolation: Lagrange
interpolation

Lagrange’s Formula.

For all j = 0, . . . , n, let

ℓj (x) =
∏
k ̸=j

x− xk

xj − xk
.

Then we have deg ℓj = n and ℓj (xi) = δi,j for all 0 ⩽ i, j ⩽ n.

{ℓj}0⩽j⩽n is basis of Rn [x].

The interpolation polynomial p:

p (x) =

n∑
i=0

yiℓi (x) .

Thus, writing the interpolation polynomial on the Lagrange basis is
straightforward.

-35-

Section 2.3. Polynomial interpolation: Lagrange
interpolation

Lagrange’s Formula.

For all j = 0, . . . , n, let

ℓj (x) =
∏
k ̸=j

x− xk

xj − xk
.

Then we have deg ℓj = n and ℓj (xi) = δi,j for all 0 ⩽ i, j ⩽ n.

{ℓj}0⩽j⩽n is basis of Rn [x].

The interpolation polynomial p:

p (x) =

n∑
i=0

yiℓi (x) .

Thus, writing the interpolation polynomial on the Lagrange basis is
straightforward.

-35-

Section 2.3. Polynomial Interpolation - Lagrange Formula

Let p (x) =
∑n

i=0 yiℓi (x) .

Evaluation cost?
Naively, computing ℓj (z) costs (say) 2n subtractions,
2n+ 1 multiplications and 1 division.

The total cost is O
(
n2

)
operations in R.

-36-

Section 2.3. Polynomial Interpolation - Lagrange Formula

But we can also write

p(x) = W (x)

n∑
i=0

yi
(x− xi)W ′(xi)

, W (x) =

n∏
i=0

(x− xi).

Assuming the W ′ (xi) are precomputed, the cost of evaluating p (z) using
this formula is only O (n) arithmetical operations.

Evaluation can be a tricky issue: not only a problem of speed but also of
numerical stability. The notion of “barycentric Lagrange interpolation” is
quite relevant regarding these stability issues (see Trefethen’s
“Approximation Theory and Approximation Practice”).

-37-

Section 2.3. Polynomial Interpolation - Lagrange Formula

But we can also write

p(x) = W (x)

n∑
i=0

yi
(x− xi)W ′(xi)

, W (x) =

n∏
i=0

(x− xi).

Assuming the W ′ (xi) are precomputed, the cost of evaluating p (z) using
this formula is only O (n) arithmetical operations.

Evaluation can be a tricky issue: not only a problem of speed but also of
numerical stability. The notion of “barycentric Lagrange interpolation” is
quite relevant regarding these stability issues (see Trefethen’s
“Approximation Theory and Approximation Practice”).

-37-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

How useful is interpolation for our initial L∞ approximation problem?

It turns out that the choice of the points is critical. The more points, the
better?

-38-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

How useful is interpolation for our initial L∞ approximation problem?

It turns out that the choice of the points is critical. The more points, the
better?

-38-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Exercise
Using your computer algebra system of choice, interpolate the function

f : x 7→ 1

1 + 5x2

at the points −1 + 2k
n , 0 ⩽ k ⩽ n, for n = 10, 15, . . . , 30. Compare

with f on [−1, 1].

In short: never use equidistant points when approximating a function by
interpolation!

-39-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Exercise
Using your computer algebra system of choice, interpolate the function

f : x 7→ 1

1 + 5x2

at the points −1 + 2k
n , 0 ⩽ k ⩽ n, for n = 10, 15, . . . , 30. Compare

with f on [−1, 1].

In short: never use equidistant points when approximating a function by
interpolation!

-39-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Theorem
(Faber)
For each n, let a system of n+ 1 distinct nodes ξ

(n)
0 , . . . , ξ

(n)
n ∈ [a, b].

Then for some f ∈ C([a, b]), the sequence of errors (||f − pn||∞)n∈N is
unbounded, where pn ∈ Rn[x] denote the polynomial which interpolates
f at the ξ

(n)
0 , . . . , ξ

(n)
n .

How depressing!
Hmmm... Really?
There is always hope!

-40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Theorem
(Faber)
For each n, let a system of n+ 1 distinct nodes ξ

(n)
0 , . . . , ξ

(n)
n ∈ [a, b].

Then for some f ∈ C([a, b]), the sequence of errors (||f − pn||∞)n∈N is
unbounded, where pn ∈ Rn[x] denote the polynomial which interpolates
f at the ξ

(n)
0 , . . . , ξ

(n)
n .

How depressing!

Hmmm... Really?
There is always hope!

-40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Theorem
(Faber)
For each n, let a system of n+ 1 distinct nodes ξ

(n)
0 , . . . , ξ

(n)
n ∈ [a, b].

Then for some f ∈ C([a, b]), the sequence of errors (||f − pn||∞)n∈N is
unbounded, where pn ∈ Rn[x] denote the polynomial which interpolates
f at the ξ

(n)
0 , . . . , ξ

(n)
n .

How depressing!
Hmmm... Really?

There is always hope!

-40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Theorem
(Faber)
For each n, let a system of n+ 1 distinct nodes ξ

(n)
0 , . . . , ξ

(n)
n ∈ [a, b].

Then for some f ∈ C([a, b]), the sequence of errors (||f − pn||∞)n∈N is
unbounded, where pn ∈ Rn[x] denote the polynomial which interpolates
f at the ξ

(n)
0 , . . . , ξ

(n)
n .

How depressing!
Hmmm... Really?
There is always hope!

-40-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Theorem 10
Let a < x0 < · · · < xn < b, and let f ∈ Cn+1 ([a, b]). Let p ∈ Rn [x] be
such that f (xi) = p (xi) for all i. Then, for all x ∈ [a, b], there exists
ξx ∈ (a, b) such that

f (x)− p (x) =
f (n+1) (ξx)

(n+ 1)!
W (x) , W (x) =

n∏
i=0

(x− xi) .

-41-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Search for families of xi which make ∥W∥∞ as small as possible.

Assume [a, b] = [−1, 1]. The n-th Chebyshev polynomial of the first kind
is defined by

Tn (cos t) = cos (nt) ,∀t ∈ [0, 2π] .

.
The Tn can also be defined by

T0 (x) = 1, T1 (x) = x, Tn+2 (x) = 2xTn+1 (x)− Tn (x) ,∀n ∈ N.

-42-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Search for families of xi which make ∥W∥∞ as small as possible.

Assume [a, b] = [−1, 1]. The n-th Chebyshev polynomial of the first kind
is defined by

Tn (cos t) = cos (nt) ,∀t ∈ [0, 2π] .

.
The Tn can also be defined by

T0 (x) = 1, T1 (x) = x, Tn+2 (x) = 2xTn+1 (x)− Tn (x) ,∀n ∈ N.

-42-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Proposition

The minimum value of the set{
∥p∥∞,[−1,1] : p ∈ Rn [x] ,degP = n, lc (p) = 1

}
is uniquely attained for Tn/2

n−1 and is therefore equal to 2−n+1.

-43-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Forcing W (x) = 2−nTn+1 (x) leads to the interpolation points

µk = cos

(
(2k + 1)π

2 (n+ 1)

)
, k = 0, . . . , n,

called the Chebyshev nodes of the first kind.

-44-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

Another important family is that of Chebyshev polynomials of the second
kind Un (x), defined by

Un (cosx) =
sin ((n+ 1)x)

sin (x)
.

They can also be defined by

U0 (x) = 1, U1 (x) = 2x, Un+2 (x) = 2xUn+1 (x)− Un (x) ,∀n ∈ N.

For all n ⩾ 0, we have d
dxTn = nUn−1.

-45-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

So the extrema of Tn+1 are −1, 1 and the zeros of Un, that is,

νk = cos

(
iπ

n

)
, k = 0, . . . , n,

called the Chebyshev nodes of the second kind.

With W (x) = 2−n+1
(
1− x2

)
Un−1 (x), we have ∥W∥∞ ⩽ 2−n+1.

-46-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

We have deg Tn = degUn = n for all n ∈ N.

Therefore, (Tk)0⩽k⩽n is a basis of Rn [x] .

Now, we give results that allow for (fast) computing the coefficients of
interpolation polynomials, at the Chebyshev nodes, expressed in the basis
(Tk)0⩽k⩽n.

-47-

Section 2.4. Interpolation and approximation, Chebyshev
polynomials

We have deg Tn = degUn = n for all n ∈ N.

Therefore, (Tk)0⩽k⩽n is a basis of Rn [x] .

Now, we give results that allow for (fast) computing the coefficients of
interpolation polynomials, at the Chebyshev nodes, expressed in the basis
(Tk)0⩽k⩽n.

-47-

