Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

is about

is about rigourous/validated/reliable/certified numerical computations on a machine

is about rigourous/validated/reliable/certified numerical computations on a machine in mathematical analysis.

(Binary) Floating Point (FP) Arithmetic

A finite FP number \boldsymbol{x} is represented by 2 integers:

- integer significand M, $2^{p-1} \leq |M| \leq 2^p 1$,
- exponent E, $E_{\min} \leq E \leq E_{\max}$

such that

$$x = \frac{M}{2^{p-1}} \times 2^E.$$

IEEE 754 standard (1984 then 2008).

See http://en.wikipedia.org/wiki/IEEE_floating_point.

	precision p	min. exponent	maximal exponent
		$E_{\sf min}$	$E_{\sf max}$
single (binary32)	24	-126	127
double (binary64)	53	-1022	1023
extended double	64	-16382	16383
quadruple (binary128)	113	-16382	16383

We have $x = \frac{M}{2^{p-1}} \times 2^E$ with $2^{p-1} \leq |M| \leq 2^p - 1$

and $E_{\min} \leqslant E \leqslant E_{\max}$.

In the IEEE 754 standard, the user defines an *active rounding mode* (or *rounding direction attribute*) among:

- round to nearest (default). If $x \in \mathbb{R}$, RN(x) is the floating-point number that is the closest to x. In case of a tie, value whose integral significand is even.
- round towards $+\infty$.
- round towards $-\infty$.
- round towards zero.

You Shouldn't Trust Your Computer

S. Rump's example (1988). Consider

$$f(a,b) = 333.75b^6 + a^2 \left(11a^2b^2 - b^6 - 121b^4 - 2\right) + 5.5b^8 + \frac{a}{2b},$$

and try to compute f(a, b) for a = 77617.0 and b = 33096.0. On an IBM 370 computer:

- 1.172603 in single precision;
- 1.1726039400531 in double precision;
- 1.172603940053178 in extended precision.

You Shouldn't Trust Your Computer

S. Rump's example (1988). Consider

$$f(a,b) = 333.75b^6 + a^2 \left(11a^2b^2 - b^6 - 121b^4 - 2\right) + 5.5b^8 + \frac{a}{2b};$$

and try to compute f(a, b) for a = 77617.0 and b = 33096.0. On an IBM 370 computer:

- 1.172603 in single precision;
- 1.1726039400531 in double precision;
- 1.172603940053178 in extended precision.

And yet, the exact result is $-0.8273960599\cdots$.

What about more recent systems? On a Pentium4 (gcc, Linux), Rump's

C program returns

- 5.960604×10^{20} in single precision;
- 2.0317×10^{29} in double precision;
- $-9.38724 \times 10^{-323}$ in extended precision.

W. Tucker. Validated Numerics. Princeton University Press, 2011.

Let $I = \int_0^8 \sin(x + e^x) dx$. Let's evaluate it using MATLAB.

Actually, $I \in [0.3474, 0.3475]...$

(Certified ?) Quadrature

Let
$$J = \int_0^3 \sin\left(\frac{1}{(10^{-3} + (1-x)^2)^{3/2}}\right) dx.$$

(Certified ?) Quadrature

Let
$$J = \int_0^3 \sin\left(\frac{1}{(10^{-3} + (1-x)^2)^{3/2}}\right) dx.$$

- Maple2023 : 10 digits $\rightarrow 0,7499743685$, 11 digits \rightarrow no answer ;
- Pari/GP: 0.7927730971479080755;
- Mathematica and Chebfun fail to answer;
- Sage : 0,7499743685;
- Chen, '06: 0.7578918118.

WHAT IS THE CORRECT ANSWER?

How to overcome these problems?

• Use Computer Algebra (Maple, Mathematica) to perform exact computations!

How to overcome these problems?

- Use Computer Algebra (Maple, Mathematica) to perform exact computations! Problem with the speed of computations.
- Interval Arithmetic: replace any number with an interval containing it. Has to be used with extreme caution.

An Example¹: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

¹Courtesy of Mioara Joldeș

An Example²: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

$$z''(\nu) + \left(4 - \frac{3}{1 + e\cos\nu}\right)z(\nu) = c$$

 \boldsymbol{c} initial conditions, \boldsymbol{e} orbital eccentricity

An Example²: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

$$z''(\nu) + \left(4 - \frac{3}{1 + e\cos\nu}\right)z(\nu) = c$$

 \boldsymbol{c} initial conditions, \boldsymbol{e} orbital eccentricity

An Example²: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

$$z''(\nu) + \left(4 - \frac{3}{1 + e\cos\nu}\right)z(\nu) = c$$

 \boldsymbol{c} initial conditions, \boldsymbol{e} orbital eccentricity

²Courtesy of Mioara Joldeş

Monitoring programs: https://cneos.jpl.nasa.gov/ (NASA) et https://neo.ssa.esa.int/ (ESA).

Monitoring programs: https://cneos.jpl.nasa.gov/ (NASA) et https://neo.ssa.esa.int/ (ESA).

Torino scale: 0 (no risk of a collision) - 10 (collision is certain, possibly causing a global climatic catastrophe).

Monitoring programs: https://cneos.jpl.nasa.gov/ (NASA) et https://neo.ssa.esa.int/ (ESA).

Torino scale: 0 (no risk of a collision) - 10 (collision is certain, possibly causing a global climatic catastrophe).

Question: certified trajectory?

http://en.wikipedia.org/wiki/99942_Apophis

99942 Apophis is a near-Earth asteroid that caused a brief period of concern in December 2004 because initial observations indicated a probability of up to 2.7 % that it would strike the Earth in 2029.

Estimates: diameter of 330 metres (1,080 ft) and mass of 40 megatonnes (within a factor of three).

P. Di Lizia's PhD³ gives algorithms to compute a "certified trajectory".

³P. Di Lizia, Robust Space Trajectory and Space System Design using Differential Algebra, Politecnico di Milano, 2008.

http://en.wikipedia.org/wiki/99942_Apophis

99942 Apophis is a near-Earth asteroid that caused a brief period of concern in December 2004 because initial observations indicated a probability of up to 2.7 % that it would strike the Earth in 2029.

Estimates: diameter of 330 metres (1,080 ft) and mass of 40 megatonnes (within a factor of three).

P. Di Lizia's PhD³ gives algorithms to compute a "certified trajectory".

Question: how to automate this?

³P. Di Lizia, Robust Space Trajectory and Space System Design using Differential Algebra, Politecnico di Milano, 2008.

Let $n \in \mathbb{N}$, $P, Q \in \mathbb{R}[X, Y]$, $\deg P, \deg Q \leq n$.

We consider

$$\begin{cases} \dot{x} = P(x, y), \\ \dot{y} = Q(x, y). \end{cases}$$

Limit cycle: periodic orbit whose neighbouring trajectories spiral either towards or away from.

Hilbert's 16th problem (second part): For a given n, maximum number of limit cycles?

Van der Pol oscillator:

$$\begin{cases} \dot{x} = y\\ \dot{y} = -x + (1 - x^2)y \end{cases}$$

Van der Pol oscillator:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -x + (1 - x^2)y \end{cases}$$

⁴Courtesy of Florent Bréhard

⁴Courtesy of Florent Bréhard

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

• 1923: P. Dulac (incorrectly) proved that a *single* polynomial vector field has a finite number of limit cycles

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

- 1923: P. Dulac (incorrectly) proved that a *single* polynomial vector field has a finite number of limit cycles
- 1981: Y. S. Il'Yashenko found a major gap in Dulac's proof
- 1991: New proofs of Dulac's result by Y. S. Il'Yashenko and J. Écalle

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

- 1923: P. Dulac (incorrectly) proved that a *single* polynomial vector field has a finite number of limit cycles
- 1981: Y. S. Il'Yashenko found a major gap in Dulac's proof
- 1991: New proofs of Dulac's result by Y. S. Il'Yashenko and J. Écalle
- But even $\mathcal{H}(2) < \infty$ is open!

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

- 1923: P. Dulac (incorrectly) proved that a *single* polynomial vector field has a finite number of limit cycles
- 1981: Y. S. Il'Yashenko found a major gap in Dulac's proof
- 1991: New proofs of Dulac's result by Y. S. Il'Yashenko and J. Écalle
- But even $\mathcal{H}(2) < \infty$ is open!
- Some lower bounds: $\mathcal{H}(2) \ge 4$, $\mathcal{H}(3) \ge 13$, $\mathcal{H}(4) \ge 22$.

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

V. I. Arnold (1977) suggested to study a restriction of this question, the so-called weak (or infinitesimal) Hilbert's 16th problem.

Moreover, he established a link between the number of limit cycles and the number of zeros of a certain integral.

(Formal) Proof of $\mathcal{H}(4) \ge 24$.

Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024 In this chapter, we present various theoretical and algorithmic results regarding polynomial approximations of functions.

We will mainly deal with real-valued continuous functions over a compact interval [a,b], $a,b \in \mathbb{R}$, $a \leq b$.

We will denote $\mathcal{C}\left([a,b]\right)$ the real vector space of continuous functions over [a,b].

Polynomial approximations

In the framework of function evaluation one usually works with the two following norms over this vector space, namely

• the least-square norm L^2 : given a weight¹ function $w \in C([a, b])$, if dx denotes the Lebesgue measure, we write

$$g \in L^{2}\left(\left[a,b\right],w,\mathrm{d}x\right) \text{ if } \int_{a}^{b} w\left(x\right)\left|g\left(x\right)\right|^{2}\mathrm{d}x < \infty,$$

and then we define

$$\left\|g\right\|_{2,w} = \sqrt{\int_{a}^{b} w\left(x\right) \left|g\left(x\right)\right|^{2} \mathrm{d}x};$$

¹Here, we will assume that it means that $w \in \mathcal{C}((a, b))$ and w > 0 almost everywhere.

In the framework of function evaluation one usually works with the two following norms over this vector space, namely $% \left({{{\left({{{{\bf{n}}_{\rm{s}}}} \right)}_{\rm{s}}}} \right)$

• the supremum norm (aka Chebyshev norm, infinity norm, L^{∞} norm) : if g is bounded on [a, b], we set

$$\left\|g\right\|_{\infty} = \sup_{x \in [a,b]} \left|g\left(x\right)\right|$$

(if f continuous, we have $\|g\|_{\infty} = \max_{x \in [a,b]} |g(x)|$).

One of the main questions we are interested in here is the following. We shall consider both the case $\|\cdot\| = \|\cdot\|_2$, and the case $\|\cdot\| = \|\cdot\|_{\infty}$.

Question. Given $f \in C([a, b])$ and $n \in \mathbb{N}$, minimize ||f - p|| where p describes the space $\mathbb{R}_n[x]$ of polynomials with real number coefficients and degree at most n.

In the L^2 case, the answer is easy to give. The space $\mathcal{C}\left([a,b]\right)\subset L^2([a,b],w,\mathrm{d} x)$ which is a Hilbert space, i.e. a vector space equipped with an inner product

$$\langle f,g \rangle = \int_{a}^{b} f(x) g(x) w(x) dx,$$

and $\|\cdot\|_2$ is the associated norm, for which L^2 is complete.

In the L^2 case, the answer is easy to give. The space $\mathcal{C}\left([a,b]\right)\subset L^2([a,b],w,\mathrm{d} x)$ which is a Hilbert space, i.e. a vector space equipped with an inner product

$$\langle f,g \rangle = \int_{a}^{b} f(x) g(x) w(x) dx,$$

and $\|\cdot\|_2$ is the associated norm, for which L^2 is complete.

The best polynomial approximation of degree at most n is the projection $p = \operatorname{pr}^{\perp}(f)$ of f over $\mathbb{R}_n[x]$. More details on the L^2 case later on.

The situation in the L^∞ case is more intricate and we will focus on it in the sequel of this chapter.

Section 2.1. Density of the polynomials in $(\mathcal{C}([a, b]), \|.\|_{\infty})$

For all $f \in \mathcal{C}([a, b])$ and $n \in \mathbb{N}$, let

$$E_n(f) = \inf_{p \in \mathbb{R}_n[x]} \|f - p\|_{\infty}.$$

We first show that $E_n(f) \to 0$ as $n \to \infty$ (Weierstraß theorem, 1885).

For all $f \in \mathcal{C}([a, b])$ and $n \in \mathbb{N}$, let

$$E_n(f) = \inf_{p \in \mathbb{R}_n[x]} \|f - p\|_{\infty}.$$

We first show that $E_n(f) \to 0$ as $n \to \infty$ (Weierstraß theorem, 1885).

Theorem 1

For all $f \in C([a, b])$ and for all $\varepsilon > 0$, there exists $n \in \mathbb{N}$, $p \in \mathbb{R}_n[x]$ such that $\|p - f\|_{\infty} < \varepsilon$.

Proofs by Runge (1885), Picard (1891), Lerch (1892 and 1903), Volterra (1897) Lebesgue (1898), Mittag-Leffler (1900), Fejér (1900 and 1916), Landau (1908), la Vallée Poussin (1908), Jackson (1911), Sierpinski (1911), Bernstein (1912), Montel (1918).

Note that we only used the values of the $B_n(f,x)$ for $0 \le n \le 2$. In fact, we have the following result.

Theorem 2

(Bohman and Korovkin) Let L_n a sequence of monotone linear operators on C([a,b]),that is to say: for all $f,g \in C([a,b])$

- $L_n(\mu f + \lambda g) = \lambda L_n(f) + \mu L_n(g)$ for all $\lambda, \mu \in \mathbb{R}$,
- if $f(x) \ge g(x)$ for all $x \in [a, b]$ then $L_n f(x) \ge L_n g(x)$ for all $x \in [a, b]$,

the following conditions are equivalent

1
$$L_n f \to f$$
 uniformly for all $f \in \mathcal{C}([a,b]);$

2 $L_n f \to f$ uniformly for the three functions $x \mapsto 1, x, x^2$;

3
$$L_n 1 \rightarrow 1$$
 and $(L_n \varphi_t)(t) \rightarrow 0$ uniformly in $t \in [a, b]$ where $\varphi_t : x \in [a, b] \mapsto (t - x)^2$.

See Cheney's book for a proof.

Section 2.1. Density of the polynomials in $(\mathcal{C}([a, b]), \|.\|_{\infty})$

A refinement of Weierstraß's theorem that gives the speed of convergence is obtained in terms of the modulus of continuity.

Definition 3

The modulus of continuity of f is the function $\boldsymbol{\omega}$ defined as

for all
$$\delta > 0$$
, $\omega(\delta) = \sup_{\substack{|x - y| < \delta, \\ x, y \in [a, b]}} |f(x) - f(y)|.$

Proposition

If f is a continuous function over [0,1], ω its modulus of continuity, then

$$||f - B_n(f, x)||_{\infty} = \frac{9}{4}\omega\left(n^{-\frac{1}{2}}\right).$$

Section 2.1. Density of the polynomials in $(\mathcal{C}([a,b]), \|.\|_{\infty})$

Corollary 4

When f is Lipschitz continuous, $E_n(f) = O(n^{-1/2})$.

Remark

For improvements and refinements, see Section 4.6 of Cheney's book or Chapter 16 of Powell's book for a presentation of Jackson theorems. Section 2.2. Best L^{∞} (or minimax) approximation - Existence

The infimum $E_n(f)$ is reached:

Proposition

Let $(E, \|\cdot\|)$ be a normed \mathbb{R} -vector space, let F be a finite dimensional subspace of $(E, \|\cdot\|)$. For all $f \in E$, there exists $p \in F$ such that $\|p - f\| = \min_{q \in F} \|q - f\|$. Moreover, the set of best approximations to a given $f \in E$ is convex.

Section 2.2. Best L^{∞} (or minimax) approximation. Uniqueness

The best L^2 approximation is unique, which is not always the case in the L^∞ setting.

Section 2.2. Best L^{∞} (or minimax) approximation. Uniqueness

The best L^2 approximation is unique, which is not always the case in the L^∞ setting.

A counter-example?

Section 2.2. Best L^{∞} (or minimax) approximation. Uniqueness

The best L^2 approximation is unique, which is not always the case in the L^∞ setting.

A counter-example?

In the case of $L^\infty,$ we need to introduce an additional condition known as the Haar condition.

Section 2.2. Best L^{∞} (or minimax) approximation

Definition 5

Consider n+1 functions $\varphi_0, \ldots, \varphi_n$ defined over [a, b]. We say that $\varphi_0, \ldots, \varphi_n$ satisfy the Haar condition iff

- (1) the φ_i are continuous;
- 2 and the following equivalent statements hold:

• for all
$$x_0, x_1, \ldots, x_n \in [a, b]$$
,

$$|\varphi_i(x_j)|_{0 \leq i,j \leq n} = 0 \quad \Leftrightarrow \quad \exists i \neq j, x_i = x_j,$$

• given pairwise distinct $x_0, \ldots, x_n \in [a, b]$ and values y_0, \ldots, y_n , there exists a unique interpolant

$$p = \sum_{k=0}^{n} \alpha_k \varphi_k$$
, with $\alpha_k \in \mathbb{R}, \forall k = 0, \dots, n$, s.t. $p(x_i) = y_i$,

• any $p = \sum_{k=0}^{n} \alpha_k \varphi_k \neq 0$ has at most n distinct zeros.

A set of functions that satisfy the Haar condition is called a Chebyshev system. The prototype example is $\varphi_i(x) = x^i$, for which we have

$$\begin{vmatrix} \varphi_0(x_0) & \cdots & \varphi_n(x_0) \\ \vdots & & \vdots \\ \varphi_0(x_n) & \cdots & \varphi_n(x_n) \end{vmatrix} = \begin{vmatrix} 1 & \cdots & x_0^n \\ \vdots & & \vdots \\ 1 & \cdots & x_n^n \end{vmatrix} = V_n = \prod_{i < j} (x_i - x_j).$$

Other examples include (exercise: prove that it is indeed the case!):

- $\left\{e^{\lambda_0 x}, \dots, e^{\lambda_n x}\right\}$ for $\lambda_0 < \lambda_1 < \dots < \lambda_n$;
- $\{1, \cos x, \sin x, \dots, \cos (nx), \sin (nx)\}$ over [a, b] where $0 \le a < b < 2\pi$;
- $\{x^{\alpha_0}, \ldots, x^{\alpha_n}\}$, $\alpha_0 < \cdots < \alpha_n$, over [a, b] with a > 0.

Let *E* be a real vector space, $e_1, e_2, \ldots, e_m \in E$, we will denote $\operatorname{Span}_{\mathbb{R}} \{e_1, \ldots, e_m\}$ the set $\{\sum_{k=1}^m \alpha_k e_k; e_1, \ldots, e_m \in \mathbb{R}\}$.

If $\{\varphi_0, \ldots, \varphi_n\}$ is a Chebyshev system over [a, b], any element of $\operatorname{Span}_{\mathbb{R}} \{\varphi_0, \ldots, \varphi_n\}$ will be called generalized polynomial.

Theorem 6

[Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902)]

Let $\{\varphi_0, \ldots, \varphi_n\}$ be a Chebyshev system over [a, b]. Let $f \in C([a, b])$. A generalized polynomial $p = \sum_{k=0}^n \alpha_k \varphi_k$ is the best approximation (or minimax approximation) of f iff there exist n + 2 points x_0, \ldots, x_{n+1} , $a \leq x_0 < x_1 < \cdots < x_{n+1} \leq b$ such that, for all k,

$$f(x_k) - p(x_k) = (-1)^k (f(x_0) - p(x_0)) = \pm ||f - p||_{\infty}$$

Theorem 6

[Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902)]

Let $\{\varphi_0, \ldots, \varphi_n\}$ be a Chebyshev system over [a, b]. Let $f \in C([a, b])$. A generalized polynomial $p = \sum_{k=0}^n \alpha_k \varphi_k$ is the best approximation (or minimax approximation) of f iff there exist n + 2 points x_0, \ldots, x_{n+1} , $a \leq x_0 < x_1 < \cdots < x_{n+1} \leq b$ such that, for all k,

$$f(x_k) - p(x_k) = (-1)^k (f(x_0) - p(x_0)) = \pm ||f - p||_{\infty}$$

In other words, $p = \sum_{k=0}^{n} \alpha_k \varphi_k$ is the best approximation if and only if the error function f - p has (at least) n + 2 extrema, all global (of the same absolute value) and with alternating signs.

Section 2.2. Best L^∞ (or minimax) approximation

$$f(x)=e^{1/\cos(x)},\ x\in[0,1],\ p(x)=\sum_{i=0}^{10}c_ix^i$$
 its minimax approximation,

Section 2.2. Best L^∞ (or minimax) approximation

$$f(x)=e^{1/\cos(x)},\ x\in[0,1],\ p(x)=\sum_{i=0}^{10}c_ix^i$$
 its minimax approximation, $\ \varepsilon(x)=f(x)-p(x)$

$$f(x)=e^{1/\cos(x)},\ x\in[0,1],\ p(x)=\sum_{i=0}^{10}c_ix^i$$
 its minimax approximation, $\varepsilon(x)=f(x)-p(x)$ s.t. $\|\varepsilon\|_{\infty}=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\}$ is as small as possible

Section 2.2. Best L^{∞} (or minimax) approximation

Example:

$$\begin{array}{l} f(x) = \arctan(x) \text{ over } [-0.9, 0.9\\ p(x) = \min(x), \text{ degree } 15\\ \varepsilon(x) = p(x) - f(x) \end{array}$$

Can you tell me what is the best approximation of $\cos x$ over $[0, 10\pi]$ on the Chebyshev system $\{1, x, x^2\}$? on $\{1, x, \dots, x^h\}$ up to and including h = 9?

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902))

Let $\{\varphi_0, \ldots, \varphi_n\}$ be a Chebyshev system over [a, b]. Let $f \in C([a, b])$. A generalized polynomial $p = \sum_{k=0}^n \alpha_k \varphi_k$ is the best approximation (or minimax approximation) of f iff there exist n + 2 points x_0, \ldots, x_{n+1} , $a \leq x_0 < x_1 < \cdots < x_{n+1} \leq b$ such that, for all k,

$$f(x_k) - p(x_k) = (-1)^k (f(x_0) - p(x_0)) = \pm ||f - p||_{\infty}$$

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902))

Let $\{\varphi_0, \ldots, \varphi_n\}$ be a Chebyshev system over [a, b]. Let $f \in C([a, b])$. A generalized polynomial $p = \sum_{k=0}^n \alpha_k \varphi_k$ is the best approximation (or minimax approximation) of f iff there exist n + 2 points x_0, \ldots, x_{n+1} , $a \leq x_0 < x_1 < \cdots < x_{n+1} \leq b$ such that, for all k,

$$f(x_k) - p(x_k) = (-1)^k (f(x_0) - p(x_0)) = \pm ||f - p||_{\infty}$$

In other words, $p = \sum_{k=0}^{n} \alpha_k \varphi_k$ is the best approximation if and only if the error function f - p has n + 2 extrema, all global (of the same absolute value) and with alternating signs.