Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

This course

is about

This course

is about rigourous/validated/reliable/certified numerical computations on a machine

This course

is about rigourous/validated/reliable/certified numerical computations on a machine in mathematical analysis.

(Binary) Floating Point (FP) Arithmetic

Given

$$
\begin{cases}\text { a precision } & p \geqslant 1, \\ \text { a set of exponents } & E_{\min }, \cdots, E_{\max } .\end{cases}
$$

A finite FP number x is represented by 2 integers:

- integer significand $M, 2^{p-1} \leqslant|M| \leqslant 2^{p}-1$,
- exponent $E, E_{\text {min }} \leqslant E \leqslant E_{\text {max }}$
such that

$$
x=\frac{M}{2^{p-1}} \times 2^{E} .
$$

IEEE Precisions

IEEE 754 standard (1984 then 2008).
See http://en.wikipedia.org/wiki/IEEE_floating_point.

	precision p	min. exponent $E_{\min }$	maximal exponent $E_{\max }$
single (binary32)	24	-126	127
double (binary64)	53	-1022	1023
extended double	64	-16382	16383
quadruple (binary128)	113	-16382	16383

We have $x=\frac{M}{2^{p-1}} \times 2^{E}$ with $2^{p-1} \leqslant|M| \leqslant 2^{p}-1$ and $E_{\text {min }} \leqslant E \leqslant E_{\text {max }}$.

Rounding modes

In the IEEE 754 standard, the user defines an active rounding mode (or rounding direction attribute) among:

- round to nearest (default). If $x \in \mathbb{R}, \mathrm{RN}(x)$ is the floating-point number that is the closest to x. In case of a tie, value whose integral significand is even.
- round towards $+\infty$.
- round towards $-\infty$.
- round towards zero.

You Shouldn't Trust Your Computer

S. Rump's example (1988). Consider

$$
f(a, b)=333.75 b^{6}+a^{2}\left(11 a^{2} b^{2}-b^{6}-121 b^{4}-2\right)+5.5 b^{8}+\frac{a}{2 b},
$$

and try to compute $f(a, b)$ for $a=77617.0$ and $b=33096.0$. On an IBM 370 computer:

- 1.172603 in single precision;
- 1.1726039400531 in double precision;
- 1.172603940053178 in extended precision.

You Shouldn't Trust Your Computer

S. Rump's example (1988). Consider

$$
f(a, b)=333.75 b^{6}+a^{2}\left(11 a^{2} b^{2}-b^{6}-121 b^{4}-2\right)+5.5 b^{8}+\frac{a}{2 b},
$$

and try to compute $f(a, b)$ for $a=77617.0$ and $b=33096.0$. On an IBM 370 computer:

- 1.172603 in single precision;
- 1.1726039400531 in double precision;
- 1.172603940053178 in extended precision.

And yet, the exact result is $-0.8273960599 \cdots$. What about more recent systems? On a Pentium4 (gcc, Linux), Rump's C program returns

- 5.960604×10^{20} in single precision;
- 2.0317×10^{29} in double precision;
- $-9.38724 \times 10^{-323}$ in extended precision.

(Certified ?) Quadrature

W. Tucker. Validated Numerics. Princeton University Press, 2011.

Let $I=\int_{0}^{8} \sin \left(x+e^{x}\right) \mathrm{d} x$. Let's evaluate it using MATLAB.
fcn_str = 'sin(x+exp(x))';
f = vectorize(inline(fcn_str));
$\mathrm{a}=0 ; \mathrm{b}=8$;
>> $q=\operatorname{quad}(f, a, b)$
$\mathrm{q}=$ 0.251102722027180

Actually, $I \in[0.3474,0.3475] \ldots$

(Certified ?) Quadrature

$$
\text { Let } J=\int_{0}^{3} \sin \left(\frac{1}{\left(10^{-3}+(1-x)^{2}\right)^{3 / 2}}\right) \mathrm{d} x \text {. }
$$

(Certified ?) Quadrature

$$
\text { Let } J=\int_{0}^{3} \sin \left(\frac{1}{\left(10^{-3}+(1-x)^{2}\right)^{3 / 2}}\right) \mathrm{d} x \text {. }
$$

- Maple2023: 10 digits $\rightarrow 0,7499743685,11$ digits \rightarrow no answer ;
- Pari/GP: 0.7927730971479080755;
- Mathematica and Chebfun fail to answer;
- Sage: 0,7499743685 ;
- Chen, '06: 0.7578918118.

WHAT IS THE CORRECT ANSWER?

How to overcome these problems?

- Use Computer Algebra (Maple, Mathematica) to perform exact computations!

How to overcome these problems?

- Use Computer Algebra (Maple, Mathematica) to perform exact computations! Problem with the speed of computations.
- Interval Arithmetic: replace any number with an interval containing it. Has to be used with extreme caution.

An Example ${ }^{1}$: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

${ }^{1}$ Courtesy of Mioara Joldes

An Example²: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

$$
z^{\prime \prime}(\nu)+\left(4-\frac{3}{1+e \cos \nu}\right) z(\nu)=c
$$

c initial conditions, e orbital eccentricity

${ }^{2}$ Courtesy of Mioara Joldes

An Example²: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

$$
z^{\prime \prime}(\nu)+\left(4-\frac{3}{1+e \cos \nu}\right) z(\nu)=c
$$

c initial conditions, e orbital eccentricity

${ }^{2}$ Courtesy of Mioara Joldeș

An Example²: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

$$
z^{\prime \prime}(\nu)+\left(4-\frac{3}{1+e \cos \nu}\right) z(\nu)=c
$$

c initial conditions, e orbital eccentricity

${ }^{2}$ Courtesy of Mioara Joldes

Near-Earth Objects

Asteroids, comets, etc. whose orbit can get close to the Earth: risk of collision.

Near-Earth Objects

Asteroids, comets, etc. whose orbit can get close to the Earth: risk of collision.

Monitoring programs: https://cneos.jpl.nasa.gov/ (NASA) et https://neo.ssa.esa.int/(ESA).

Near-Earth Objects

Asteroids, comets, etc. whose orbit can get close to the Earth: risk of collision.

Monitoring programs: https://cneos.jpl.nasa.gov/ (NASA) et https://neo.ssa.esa.int/(ESA).

Torino scale: 0 (no risk of a collision) - 10 (collision is certain, possibly causing a global climatic catastrophe).

Near-Earth Objects

Asteroids, comets, etc. whose orbit can get close to the Earth: risk of collision.

Monitoring programs: https://cneos.jpl.nasa.gov/ (NASA) et https://neo.ssa.esa.int/(ESA).

Torino scale: 0 (no risk of a collision) - 10 (collision is certain, possibly causing a global climatic catastrophe).

Question: certified trajectory?

Near-Earth Objects

http://en.wikipedia.org/wiki/99942_Apophis
99942 Apophis is a near-Earth asteroid that caused a brief period of concern in December 2004 because initial observations indicated a probability of up to 2.7% that it would strike the Earth in 2029.

Estimates: diameter of 330 metres ($1,080 \mathrm{ft}$) and mass of 40 megatonnes (within a factor of three).
P. Di Lizia's PhD^{3} gives algorithms to compute a "certified trajectory".

[^0]
Near-Earth Objects

http://en.wikipedia.org/wiki/99942_Apophis
99942 Apophis is a near-Earth asteroid that caused a brief period of concern in December 2004 because initial observations indicated a probability of up to 2.7% that it would strike the Earth in 2029.

Estimates: diameter of 330 metres ($1,080 \mathrm{ft}$) and mass of 40 megatonnes (within a factor of three).
P. Di Lizia's PhD^{3} gives algorithms to compute a "certified trajectory".

Question: how to automate this?

[^1]
Hilbert's 16th problem

Let $n \in \mathbb{N}, P, Q \in \mathbb{R}[X, Y], \operatorname{deg} P, \operatorname{deg} Q \leqslant n$.
We consider

$$
\left\{\begin{array}{l}
\dot{x}=P(x, y), \\
\dot{y}=Q(x, y) .
\end{array}\right.
$$

Limit cycle: periodic orbit whose neighbouring trajectories spiral either towards or away from.

Hilbert's 16th problem (second part): For a given n, maximum number of limit cycles?

An example of limit cycle ${ }^{4}$

Van der Pol oscillator: $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-x+\left(1-x^{2}\right) y\end{array}\right.$
${ }^{4}$ Courtesy of Florent Bréhard

An example of limit cycle ${ }^{4}$

Van der Pol oscillator: $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-x+\left(1-x^{2}\right) y\end{array}\right.$
${ }^{4}$ Courtesy of Florent Bréhard

An example of limit cycle ${ }^{4}$

Van der Pol oscillator: $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-x+\left(1-x^{2}\right) y\end{array}\right.$

An example of limit cycle ${ }^{4}$

Van der Pol oscillator: $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-x+\left(1-x^{2}\right) y\end{array}\right.$

An example of limit cycle ${ }^{4}$

Van der Pol oscillator: $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-x+\left(1-x^{2}\right) y\end{array}\right.$
${ }^{4}$ Courtesy of Florent Bréhard

An example of limit cycle ${ }^{4}$

Van der Pol oscillator: $\left\{\begin{array}{l}\dot{x}=y \\ \dot{y}=-x+\left(1-x^{2}\right) y\end{array}\right.$
${ }^{4}$ Courtesy of Florent Bréhard

Hilbert's 16th Problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?
D. Hilbert, International Congress of Mathematicians, Paris, 1900

- 1923: P. Dulac (incorrectly) proved that a single polynomial vector field has a finite number of limit cycles

Hilbert's 16th Problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?
D. Hilbert, International Congress of Mathematicians, Paris, 1900

- 1923: P. Dulac (incorrectly) proved that a single polynomial vector field has a finite number of limit cycles
- 1981: Y. S. Il'Yashenko found a major gap in Dulac's proof
- 1991: New proofs of Dulac's result by Y. S. II'Yashenko and J. Écalle

Hilbert's 16th Problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?
D. Hilbert, International Congress of Mathematicians, Paris, 1900

- 1923: P. Dulac (incorrectly) proved that a single polynomial vector field has a finite number of limit cycles
- 1981: Y. S. Il'Yashenko found a major gap in Dulac's proof
- 1991: New proofs of Dulac's result by Y. S. II'Yashenko and J. Écalle
- But even $\mathcal{H}(2)<\infty$ is open!

Hilbert's 16th Problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?
D. Hilbert, International Congress of Mathematicians, Paris, 1900

- 1923: P. Dulac (incorrectly) proved that a single polynomial vector field has a finite number of limit cycles
- 1981: Y. S. Il'Yashenko found a major gap in Dulac's proof
- 1991: New proofs of Dulac's result by Y. S. II'Yashenko and J. Écalle
- But even $\mathcal{H}(2)<\infty$ is open!

- Some lower bounds: $\mathcal{H}(2) \geqslant 4, \mathcal{H}(3) \geqslant 13$, $\mathcal{H}(4) \geqslant 22$.

Hilbert's 16th problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number $\mathcal{H}(n)$ of limit cycles a polynomial vector field of degree at most n in the plane can have?
D. Hilbert, International Congress of Mathematicians, Paris, 1900
V. I. Arnold (1977) suggested to study a restriction of this question, the so-called weak (or infinitesimal) Hilbert's 16th problem.

Moreover, he established a link between the number of limit cycles and the number of zeros of a certain integral.
(Formal) Proof of $\mathcal{H}(4) \geqslant 24$.

Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

Chapter 1. Polynomial approximations

In this chapter, we present various theoretical and algorithmic results regarding polynomial approximations of functions.

We will mainly deal with real-valued continuous functions over a compact interval $[a, b], a, b \in \mathbb{R}, a \leqslant b$.

We will denote $\mathcal{C}([a, b])$ the real vector space of continuous functions over $[a, b]$.

Polynomial approximations

In the framework of function evaluation one usually works with the two following norms over this vector space, namely

- the least-square norm L^{2} : given a weight ${ }^{1}$ function $w \in \mathcal{C}([a, b])$, if $\mathrm{d} x$ denotes the Lebesgue measure, we write

$$
g \in L^{2}([a, b], w, \mathrm{~d} x) \text { if } \int_{a}^{b} w(x)|g(x)|^{2} \mathrm{~d} x<\infty
$$

and then we define

$$
\|g\|_{2, w}=\sqrt{\int_{a}^{b} w(x)|g(x)|^{2} \mathrm{~d} x}
$$

[^2]
Polynomial approximations

In the framework of function evaluation one usually works with the two following norms over this vector space, namely

- the supremum norm (aka Chebyshev norm, infinity norm, L^{∞} norm) : if g is bounded on $[a, b]$, we set

$$
\|g\|_{\infty}=\sup _{x \in[a, b]}|g(x)|
$$

(if f continuous, we have $\|g\|_{\infty}=\max _{x \in[a, b]}|g(x)|$).

Best polynomial approximations

One of the main questions we are interested in here is the following. We shall consider both the case $\|\cdot\|=\|\cdot\|_{2}$, and the case $\|\cdot\|=\|\cdot\|_{\infty}$.

Question. Given $f \in \mathcal{C}([a, b])$ and $n \in \mathbb{N}$, minimize $\|f-p\|$ where p describes the space $\mathbb{R}_{n}[x]$ of polynomials with real number coefficients and degree at most n.

Best polynomial approximations

In the L^{2} case, the answer is easy to give. The space $\mathcal{C}([a, b]) \subset L^{2}([a, b], w, \mathrm{~d} x)$ which is a Hilbert space, i.e. a vector space equipped with an inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) \mathrm{d} x,
$$

and $\|\cdot\|_{2}$ is the associated norm, for which L^{2} is complete.

Best polynomial approximations

In the L^{2} case, the answer is easy to give. The space $\mathcal{C}([a, b]) \subset L^{2}([a, b], w, \mathrm{~d} x)$ which is a Hilbert space, i.e. a vector space equipped with an inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) w(x) \mathrm{d} x
$$

and $\|\cdot\|_{2}$ is the associated norm, for which L^{2} is complete.
The best polynomial approximation of degree at most n is the projection $p=\operatorname{pr}^{\perp}(f)$ of f over $\mathbb{R}_{n}[x]$. More details on the L^{2} case later on.

The situation in the L^{∞} case is more intricate and we will focus on it in the sequel of this chapter.

Section 2.1. Density of the polynomials in $\left(\mathcal{C}([a, b]),\|\cdot\|_{\infty}\right)$

For all $f \in \mathcal{C}([a, b])$ and $n \in \mathbb{N}$, let

$$
E_{n}(f)=\inf _{p \in \mathbb{R}_{n}[x]}\|f-p\|_{\infty} .
$$

We first show that $E_{n}(f) \rightarrow 0$ as $n \rightarrow \infty$ (Weierstraß theorem, 1885).

Section 2.1. Density of the polynomials in $\left(\mathcal{C}([a, b]),\|\cdot\|_{\infty}\right)$

For all $f \in \mathcal{C}([a, b])$ and $n \in \mathbb{N}$, let

$$
E_{n}(f)=\inf _{p \in \mathbb{R}_{n}[x]}\|f-p\|_{\infty} .
$$

We first show that $E_{n}(f) \rightarrow 0$ as $n \rightarrow \infty$ (Weierstraß theorem, 1885).

Theorem 1

For all $f \in \mathcal{C}([a, b])$ and for all $\varepsilon>0$, there exists $n \in \mathbb{N}, p \in \mathbb{R}_{n}[x]$ such that $\|p-f\|_{\infty}<\varepsilon$.

Proofs by Runge (1885), Picard (1891), Lerch (1892 and 1903), Volterra (1897) Lebesgue (1898), Mittag-Leffler (1900), Fejér (1900 and 1916), Landau (1908), la Vallée Poussin (1908), Jackson (1911), Sierpinski (1911), Bernstein (1912), Montel (1918).

Section 2.1. Density of the polynomials in $\left(\mathcal{C}([a, b]),\|\cdot\|_{\infty}\right)$

Note that we only used the values of the $B_{n}(f, x)$ for $0 \leqslant n \leqslant 2$. In fact, we have the following result.

Theorem 2

(Bohman and Korovkin) Let L_{n} a sequence of monotone linear operators on $\mathcal{C}(\mid a, b])$, that is to say: for all $f, g \in \mathcal{C}([a, b])$

- $L_{n}(\mu f+\lambda g)=\lambda L_{n}(f)+\mu L_{n}(g)$ for all $\lambda, \mu \in \mathbb{R}$,
- if $f(x) \geqslant g(x)$ for all $x \in[a, b]$ then
$L_{n} f(x) \geqslant L_{n} g(x)$ for all $x \in[a, b]$,
the following conditions are equivalent
(1) $L_{n} f \rightarrow f$ uniformly for all $f \in \mathcal{C}([a, b])$;
(2) $L_{n} f \rightarrow f$ uniformly for the three functions $x \mapsto 1, x, x^{2}$;
(3) $L_{n} 1 \rightarrow 1$ and $\left(L_{n} \varphi_{t}\right)(t) \rightarrow 0$ uniformly in $t \in[a, b]$ where $\varphi_{t}: x \in[a, b] \mapsto(t-x)^{2}$.

See Cheney's book for a proof.

Section 2.1. Density of the polynomials in $\left(\mathcal{C}([a, b]),\|\cdot\|_{\infty}\right)$

A refinement of Weierstraß's theorem that gives the speed of convergence is obtained in terms of the modulus of continuity.

Definition 3

The modulus of continuity of f is the function ω defined as

$$
\text { for all } \delta>0, \quad \omega(\delta)=\sup _{\substack{|x-y|<\delta, x, y \in[a, b]}}|f(x)-f(y)| \text {. }
$$

Proposition

If f is a continuous function over $[0,1], \omega$ its modulus of continuity, then

$$
\left\|f-B_{n}(f, x)\right\|_{\infty}=\frac{9}{4} \omega\left(n^{-\frac{1}{2}}\right)
$$

Section 2.1. Density of the polynomials in $\left(\mathcal{C}([a, b]),\|\cdot\|_{\infty}\right)$

Corollary 4

When f is Lipschitz continuous, $E_{n}(f)=O\left(n^{-1 / 2}\right)$.

Remark

For improvements and refinements, see Section 4.6 of Cheney's book or Chapter 16 of Powell's book for a presentation of Jackson theorems.

Section 2.2. Best L^{∞} (or minimax) approximation -

Existence

The infimum $E_{n}(f)$ is reached:

Proposition

Let $(E,\|\cdot\|)$ be a normed \mathbb{R}-vector space, let F be a finite dimensional subspace of $(E,\|\cdot\|)$. For all $f \in E$, there exists $p \in F$ such that $\|p-f\|=\min _{q \in F}\|q-f\|$. Moreover, the set of best approximations to a given $f \in E$ is convex.

Section 2.2. Best L^{∞} (or minimax) approximation. Uniqueness

The best L^{2} approximation is unique, which is not always the case in the L^{∞} setting.

Section 2.2. Best L^{∞} (or minimax) approximation. Uniqueness

The best L^{2} approximation is unique, which is not always the case in the L^{∞} setting.

A counter-example?

Section 2.2. Best L^{∞} (or minimax) approximation. Uniqueness

The best L^{2} approximation is unique, which is not always the case in the L^{∞} setting.

A counter-example?
In the case of L^{∞}, we need to introduce an additional condition known as the Haar condition.

Section 2.2. Best L^{∞} (or minimax) approximation

Definition 5

Consider $n+1$ functions $\varphi_{0}, \ldots, \varphi_{n}$ defined over $[a, b]$. We say that $\varphi_{0}, \ldots, \varphi_{n}$ satisfy the Haar condition iff
(1) the φ_{i} are continuous;
(2) and the following equivalent statements hold:

- for all $x_{0}, x_{1}, \ldots, x_{n} \in[a, b]$,

$$
\left|\varphi_{i}\left(x_{j}\right)\right|_{0 \leqslant i, j \leqslant n}=0 \quad \Leftrightarrow \quad \exists i \neq j, x_{i}=x_{j}
$$

- given pairwise distinct $x_{0}, \ldots, x_{n} \in[a, b]$ and values y_{0}, \ldots, y_{n}, there exists a unique interpolant

$$
p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k}, \text { with } \alpha_{k} \in \mathbb{R}, \forall k=0, \ldots, n \text {, s.t. } p\left(x_{i}\right)=y_{i}
$$

- any $p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k} \neq 0$ has at most n distinct zeros.

Section 2.2. Best L^{∞} (or minimax) approximation

A set of functions that satisfy the Haar condition is called a Chebyshev system. The prototype example is $\varphi_{i}(x)=x^{i}$, for which we have

$$
\left|\begin{array}{ccc}
\varphi_{0}\left(x_{0}\right) & \cdots & \varphi_{n}\left(x_{0}\right) \\
\vdots & & \vdots \\
\varphi_{0}\left(x_{n}\right) & \cdots & \varphi_{n}\left(x_{n}\right)
\end{array}\right|=\left|\begin{array}{ccc}
1 & \cdots & x_{0}^{n} \\
\vdots & & \vdots \\
1 & \cdots & x_{n}^{n}
\end{array}\right|=V_{n}=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

Section 2.2. Best L^{∞} (or minimax) approximation

Other examples include (exercise: prove that it is indeed the case!):

- $\left\{e^{\lambda_{0} x}, \ldots, e^{\lambda_{n} x}\right\}$ for $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}$;
- $\{1, \cos x, \sin x, \ldots, \cos (n x), \sin (n x)\}$ over $[a, b]$ where $0 \leqslant a<b<2 \pi$;
- $\left\{x^{\alpha_{0}}, \ldots, x^{\alpha_{n}}\right\}, \alpha_{0}<\cdots<\alpha_{n}$, over $[a, b]$ with $a>0$.

Section 2.2. Best L^{∞} (or minimax) approximation

Let E be a real vector space, $e_{1}, e_{2}, \ldots, e_{m} \in E$, we will denote $\operatorname{Span}_{\mathbb{R}}\left\{e_{1}, \ldots, e_{m}\right\}$ the set $\left\{\sum_{k=1}^{m} \alpha_{k} e_{k} ; e_{1}, \ldots, e_{m} \in \mathbb{R}\right\}$.

If $\left\{\varphi_{0}, \ldots, \varphi_{n}\right\}$ is a Chebyshev system over $[a, b]$, any element of $\operatorname{Span}_{\mathbb{R}}\left\{\varphi_{0}, \ldots, \varphi_{n}\right\}$ will be called generalized polynomial.

Section 2.2. Best L^{∞} (or minimax) approximation

Theorem 6

[Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902)]
Let $\left\{\varphi_{0}, \ldots, \varphi_{n}\right\}$ be a Chebyshev system over $[a, b]$. Let $f \in \mathcal{C}([a, b])$. A generalized polynomial $p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k}$ is the best approximation (or minimax approximation) of f iff there exist $n+2$ points x_{0}, \ldots, x_{n+1}, $a \leqslant x_{0}<x_{1}<\cdots<x_{n+1} \leqslant b$ such that, for all k,

$$
f\left(x_{k}\right)-p\left(x_{k}\right)=(-1)^{k}\left(f\left(x_{0}\right)-p\left(x_{0}\right)\right)= \pm\|f-p\|_{\infty} .
$$

Section 2.2. Best L^{∞} (or minimax) approximation

Theorem 6

[Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902)]
Let $\left\{\varphi_{0}, \ldots, \varphi_{n}\right\}$ be a Chebyshev system over $[a, b]$. Let $f \in \mathcal{C}([a, b])$. A generalized polynomial $p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k}$ is the best approximation (or minimax approximation) of f iff there exist $n+2$ points x_{0}, \ldots, x_{n+1}, $a \leqslant x_{0}<x_{1}<\cdots<x_{n+1} \leqslant b$ such that, for all k,

$$
f\left(x_{k}\right)-p\left(x_{k}\right)=(-1)^{k}\left(f\left(x_{0}\right)-p\left(x_{0}\right)\right)= \pm\|f-p\|_{\infty} .
$$

In other words, $p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k}$ is the best approximation if and only if the error function $f-p$ has (at least) $n+2$ extrema, all global (of the same absolute value) and with alternating signs.

Section 2.2. Best L^{∞} (or minimax) approximation

$$
f(x)=e^{1 / \cos (x)}, x \in[0,1], p(x)=\sum_{i=0}^{10} c_{i} x^{i} \text { its minimax }
$$ approximation,

Section 2.2. Best L^{∞} (or minimax) approximation

$$
f(x)=e^{1 / \cos (x)}, x \in[0,1], p(x)=\sum_{i=0}^{10} c_{i} x^{i} \text { its minimax }
$$ approximation, $\varepsilon(x)=f(x)-p(x)$

Section 2.2. Best L^{∞} (or minimax) approximation

$$
\begin{aligned}
& f(x)=e^{1 / \cos (x)}, x \in[0,1], \quad p(x)=\sum_{i=0}^{10} c_{i} x^{i} \text { its minimax } \\
& \text { approximation, } \varepsilon(x)=f(x)-p(x) \text { s.t. }\|\varepsilon\|_{\infty}=\sup _{x \in[a, b]}\{|\varepsilon(x)|\} \text { is as } \\
& \text { small as possible }
\end{aligned}
$$

Section 2.2. Best L^{∞} (or minimax) approximation

Example:

$$
\begin{aligned}
& f(x)=\arctan (x) \text { over }[-0.9,0.9] \\
& p(x)=\operatorname{minimax}, \text { degree } 15 \\
& \varepsilon(x)=p(x)-f(x)
\end{aligned}
$$

Section 2.2. Best L^{∞} (or minimax) approximation

Can you tell me what is the best approximation of $\cos x$ over $[0,10 \pi]$ on the Chebyshev system $\left\{1, x, x^{2}\right\}$? on $\left\{1, x, \ldots, x^{h}\right\}$ up to and including $h=9$?

Section 2.2. Best L^{∞} (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902))

Let $\left\{\varphi_{0}, \ldots, \varphi_{n}\right\}$ be a Chebyshev system over $[a, b]$. Let $f \in \mathcal{C}([a, b])$. A generalized polynomial $p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k}$ is the best approximation (or minimax approximation) of f iff there exist $n+2$ points x_{0}, \ldots, x_{n+1}, $a \leqslant x_{0}<x_{1}<\cdots<x_{n+1} \leqslant b$ such that, for all k,

$$
f\left(x_{k}\right)-p\left(x_{k}\right)=(-1)^{k}\left(f\left(x_{0}\right)-p\left(x_{0}\right)\right)= \pm\|f-p\|_{\infty} .
$$

Section 2.2. Best L^{∞} (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902))

Let $\left\{\varphi_{0}, \ldots, \varphi_{n}\right\}$ be a Chebyshev system over $[a, b]$. Let $f \in \mathcal{C}([a, b])$. A generalized polynomial $p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k}$ is the best approximation (or minimax approximation) of f iff there exist $n+2$ points x_{0}, \ldots, x_{n+1}, $a \leqslant x_{0}<x_{1}<\cdots<x_{n+1} \leqslant b$ such that, for all k,

$$
f\left(x_{k}\right)-p\left(x_{k}\right)=(-1)^{k}\left(f\left(x_{0}\right)-p\left(x_{0}\right)\right)= \pm\|f-p\|_{\infty}
$$

In other words, $p=\sum_{k=0}^{n} \alpha_{k} \varphi_{k}$ is the best approximation if and only if the error function $f-p$ has $n+2$ extrema, all global (of the same absolute value) and with alternating signs.

[^0]: ${ }^{3}$ P. Di Lizia, Robust Space Trajectory and Space System Design using Differential Algebra, Politecnico di Milano, 2008.

[^1]: ${ }^{3}$ P. Di Lizia, Robust Space Trajectory and Space System Design using Differential Algebra, Politecnico di Milano, 2008.

[^2]: ${ }^{1}$ Here, we will assume that it means that $w \in \mathcal{C}((a, b))$ and $w>0$ almost everywhere.

