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(Binary) Floating Point (FP) Arithmetic

Given {
a precision p ⩾ 1,
a set of exponents Emin, · · · , Emax.

A finite FP number x is represented by 2 integers:
integer significand M , 2p−1 ⩽ |M | ⩽ 2p − 1,
exponent E, Emin ⩽ E ⩽ Emax

such that
x =

M

2p−1
× 2E .
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IEEE Precisions

IEEE 754 standard (1984 then 2008).

See http://en.wikipedia.org/wiki/IEEE_floating_point.

precision p min. exponent maximal exponent
Emin Emax

single (binary32) 24 −126 127
double (binary64) 53 −1022 1023
extended double 64 −16382 16383
quadruple (binary128) 113 −16382 16383

We have x = M
2p−1 × 2E with 2p−1 ⩽ |M | ⩽ 2p − 1

and Emin ⩽ E ⩽ Emax.
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Rounding modes

In the IEEE 754 standard, the user defines an active rounding mode (or
rounding direction attribute) among:

round to nearest (default). If x ∈ R, RN(x) is the floating-point
number that is the closest to x. In case of a tie, value whose
integral significand is even.
round towards +∞.
round towards −∞.
round towards zero.
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You Shouldn’t Trust Your Computer

S. Rump’s example (1988). Consider

f(a, b) = 333.75b6 + a2
(
11a2b2 − b6 − 121b4 − 2

)
+ 5.5b8 +

a

2b
,

and try to compute f(a, b) for a = 77617.0 and b = 33096.0. On an IBM
370 computer:

1.172603 in single precision;
1.1726039400531 in double precision;
1.172603940053178 in extended precision.

And yet, the exact result is −0.8273960599 · · · .
What about more recent systems? On a Pentium4 (gcc, Linux), Rump’s
C program returns

5.960604× 1020 in single precision;
2.0317× 1029 in double precision;
−9.38724× 10−323 in extended precision.
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(Certified ?) Quadrature

W. Tucker. Validated Numerics. Princeton University Press, 2011.

Let I =

∫ 8

0

sin(x+ ex)dx. Let’s evaluate it using MATLAB.

fcn_str = ’sin(x+exp(x))’;
f = vectorize(inline(fcn_str));
a = 0; b = 8;
>> q = quad(f,a,b)
q =

0.251102722027180

Actually, I ∈ [0.3474, 0.3475]...
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(Certified ?) Quadrature

Let J =

∫ 3

0

sin

(
1

(10−3 + (1− x)2)3/2

)
dx.
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 1

 0  0.5  1  1.5  2  2.5  3

Maple2023 : 10 digits → 0, 7499743685, 11 digits → no answer ;
Pari/GP: 0.7927730971479080755;
Mathematica and Chebfun fail to answer;
Sage : 0, 7499743685 ;
Chen, ’06: 0.7578918118.
WHAT IS THE CORRECT ANSWER?
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How to overcome these problems?

Use Computer Algebra (Maple, Mathematica) to perform exact
computations!

Problem with the speed of computations.

Interval Arithmetic: replace any number with an interval containing
it. Has to be used with extreme caution.
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An Example1: Tschauner-Hempel Equation
Relative Motion in Keplerian Dynamics
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1Courtesy of Mioara Joldeş
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An Example2: Tschauner-Hempel Equation
Relative Motion in Keplerian Dynamics
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Near-Earth Objects

Asteroids, comets, etc. whose orbit can get close to the Earth: risk of
collision.

Monitoring programs: https://cneos.jpl.nasa.gov/ (NASA) et
https://neo.ssa.esa.int/ (ESA).

Torino scale: 0 (no risk of a collision) - 10 (collision is certain, possibly
causing a global climatic catastrophe).

Question: certified trajectory?
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Near-Earth Objects

http://en.wikipedia.org/wiki/99942_Apophis
99942 Apophis is a near-Earth asteroid that caused a brief

period of concern in December 2004 because initial observations
indicated a probability of up to 2.7 % that it would strike the
Earth in 2029.

Estimates: diameter of 330 metres (1,080 ft) and mass of 40 megatonnes
(within a factor of three).

P. Di Lizia’s PhD3 gives algorithms to compute a “certified trajectory”.

Question: how to automate this?

3P. Di Lizia, Robust Space Trajectory and Space System Design using Differential
Algebra, Politecnico di Milano, 2008.
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Hilbert’s 16th problem

Let n ∈ N, P,Q ∈ R[X,Y ], degP,degQ ⩽ n.

We consider {
ẋ = P (x, y),

ẏ = Q(x, y).

Limit cycle: periodic orbit whose neighbouring trajectories spiral either
towards or away from.

Hilbert’s 16th problem (second part): For a given n, maximum number
of limit cycles?
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An example of limit cycle4
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Van der Pol oscillator:

{
ẋ = y

ẏ = −x+ (1− x2)y
4Courtesy of Florent Bréhard
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ẋ = y
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Hilbert’s 16th Problem

Hilbert’s 16th problem (second part)

For a given integer n, what is the maximum number H(n) of limit cycles
a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

1923: P. Dulac (incorrectly) proved that a
single polynomial vector field has a finite
number of limit cycles

1981: Y. S. Il’Yashenko found a major gap in
Dulac’s proof
1991: New proofs of Dulac’s result by Y. S.
Il’Yashenko and J. Écalle
But even H(2) < ∞ is open!
Some lower bounds: H(2) ⩾ 4, H(3) ⩾ 13,
H(4) ⩾ 22.
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Hilbert’s 16th problem

Hilbert’s 16th problem (second part)

For a given integer n, what is the maximum number H(n) of limit cycles
a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

V. I. Arnold (1977) suggested to study a restriction of this question, the
so-called weak (or infinitesimal) Hilbert’s 16th problem.

Moreover, he established a link between the number of limit cycles and
the number of zeros of a certain integral.

(Formal) Proof of H(4) ⩾ 24.
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Chapter 1. Polynomial approximations

In this chapter, we present various theoretical and algorithmic results
regarding polynomial approximations of functions.

We will mainly deal with real-valued continuous functions over a compact
interval [a, b], a, b ∈ R, a ⩽ b.

We will denote C ([a, b]) the real vector space of continuous functions
over [a, b].
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Polynomial approximations

In the framework of function evaluation one usually works with the two
following norms over this vector space, namely

the least-square norm L2: given a weight1 function w ∈ C ([a, b]), if
dx denotes the Lebesgue measure, we write

g ∈ L2 ([a, b] , w,dx) if
∫ b

a

w (x) |g (x)|2 dx <∞,

and then we define

∥g∥2,w =

√∫ b

a

w (x) |g (x)|2 dx;

1Here, we will assume that it means that w ∈ C((a, b)) and w > 0 almost
everywhere.
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Polynomial approximations

In the framework of function evaluation one usually works with the two
following norms over this vector space, namely

the supremum norm (aka Chebyshev norm, infinity norm, L∞

norm) : if g is bounded on [a, b], we set

∥g∥∞ = sup
x∈[a,b]

|g (x)|

(if f continuous, we have ∥g∥∞ = maxx∈[a,b] |g (x)|).
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Best polynomial approximations

One of the main questions we are interested in here is the following. We
shall consider both the case ∥·∥ = ∥·∥2, and the case ∥·∥ = ∥·∥∞.

Question. Given f ∈ C ([a, b]) and n ∈ N, minimize ∥f − p∥ where p
describes the space Rn [x] of polynomials with real number coefficients
and degree at most n.
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Best polynomial approximations

In the L2 case, the answer is easy to give. The space
C ([a, b]) ⊂ L2([a, b], w,dx) which is a Hilbert space, i.e. a vector space
equipped with an inner product

⟨f, g⟩ =
∫ b

a

f (x) g (x)w (x) dx,

and ∥·∥2 is the associated norm, for which L2 is complete.

The best polynomial approximation of degree at most n is the projection
p = pr⊥ (f) of f over Rn [x]. More details on the L2 case later on.

The situation in the L∞ case is more intricate and we will focus on it in
the sequel of this chapter.
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Section 2.1. Density of the polynomials in (C ([a, b]), ∥.∥∞)

For all f ∈ C ([a, b]) and n ∈ N, let

En (f) = inf
p∈Rn[x]

∥f − p∥∞ .

We first show that En (f)→ 0 as n→∞ (Weierstraß theorem, 1885).

Theorem 1
For all f ∈ C ([a, b]) and for all ε > 0, there exists n ∈ N, p ∈ Rn [x]
such that ∥p− f∥∞ < ε.

Proofs by Runge (1885), Picard (1891), Lerch (1892 and 1903), Volterra
(1897) Lebesgue (1898), Mittag-Leffler (1900), Fejér (1900 and 1916),
Landau (1908), la Vallée Poussin (1908), Jackson (1911), Sierpinski
(1911), Bernstein (1912), Montel (1918).
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Section 2.1. Density of the polynomials in (C ([a, b]), ∥.∥∞)

Note that we only used the values of the Bn (f, x) for 0 ⩽ n ⩽ 2. In fact,
we have the following result.

Theorem 2
(Bohman and Korovkin) Let Ln a sequence of monotone linear operators
on C (|a, b]) ,that is to say: for all f, g ∈ C ([a, b])

Ln (µf + λg) = λLn (f) + µLn (g) for all λ, µ ∈ R,

if f(x) ⩾ g (x) for allx ∈ [a, b] then
Lnf(x) ⩾ Lng (x) for allx ∈ [a, b],

the following conditions are equivalent
1 Lnf → f uniformly for all f ∈ C ([a, b]) ;
2 Lnf → funiformly for the three functions x 7→ 1, x, x2;
3 Ln1→1 and (Lnφt)(t)→ 0 uniformly in t ∈ [a, b] where

φt : x ∈ [a, b] 7→ (t− x)
2.

See Cheney’s book for a proof.
-8-



Section 2.1. Density of the polynomials in (C ([a, b]), ∥.∥∞)

A refinement of Weierstraß’s theorem that gives the speed of
convergence is obtained in terms of the modulus of continuity.

Definition 3
The modulus of continuity of f is the function ω defined as

for all δ > 0, ω(δ) = sup
|x− y| < δ,
x, y ∈ [a, b]

|f(x)− f(y)|.

Proposition

If f is a continuous function over [0, 1], ω its modulus of continuity, then

∥f −Bn(f, x)∥∞ = 9
4ω

(
n− 1

2

)
.
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Section 2.1. Density of the polynomials in (C ([a, b]), ∥.∥∞)

Corollary 4

When f is Lipschitz continuous, En(f) = O(n−1/2).

Remark
For improvements and refinements, see Section 4.6 of Cheney’s book or
Chapter 16 of Powell’s book for a presentation of Jackson theorems.
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Section 2.2. Best L∞ (or minimax) approximation -
Existence

The infimum En (f) is reached:

Proposition

Let ( E, ∥· ∥ ) be a normed R-vector space, let F be a finite dimensional
subspace of (E, ∥·∥). For all f ∈ E, there exists p ∈ F such that
∥p− f∥ = minq∈F ∥q − f∥. Moreover, the set of best approximations to
a given f ∈ E is convex.
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Section 2.2. Best L∞ (or minimax) approximation.
Uniqueness

The best L2 approximation is unique, which is not always the case in the
L∞ setting.

A counter-example?

In the case of L∞, we need to introduce an additional condition known
as the Haar condition.
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Section 2.2. Best L∞ (or minimax) approximation

Definition 5
Consider n+ 1 functions φ0, . . . , φn defined over [a, b]. We say that
φ0, . . . , φn satisfy the Haar condition iff

1 the φi are continuous;
2 and the following equivalent statements hold:

for all x0, x1, . . . , xn ∈ [a, b],

|φi (xj) |0⩽i,j⩽n = 0 ⇔ ∃i ̸= j, xi = xj ,

given pairwise distinct x0, . . . , xn ∈ [a, b] and values y0, . . . , yn,
there exists a unique interpolant

p =

n∑
k=0

αkφk, with αk ∈ R,∀k = 0, . . . , n, s.t. p (xi) = yi,

any p =
∑n

k=0 αkφk ̸= 0 has at most n distinct zeros.
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Section 2.2. Best L∞ (or minimax) approximation

A set of functions that satisfy the Haar condition is called a Chebyshev
system. The prototype example is φi (x) = xi, for which we have∣∣∣∣∣∣∣

φ0 (x0) · · · φn (x0)
...

...
φ0 (xn) · · · φn (xn)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 · · · xn

0
...

...
1 · · · xn

n

∣∣∣∣∣∣∣ = Vn =
∏
i<j

(xi − xj) .
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Section 2.2. Best L∞ (or minimax) approximation

Other examples include (exercise: prove that it is indeed the case!):{
eλ0x, . . . , eλnx

}
for λ0 < λ1 < · · · < λn;

{1, cosx, sinx, . . . , cos (nx) , sin (nx)} over [a, b] where
0 ⩽ a < b < 2π;
{xα0 , . . . , xαn}, α0 < · · · < αn, over [a, b] with a > 0.
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Section 2.2. Best L∞ (or minimax) approximation

Let E be a real vector space, e1, e2, . . . , em ∈ E, we will denote
SpanR {e1, . . . , em} the set {

∑m
k=1 αkek; e1, . . . , em ∈ R}.

If {φ0, . . . , φn} is a Chebyshev system over [a, b], any element of
SpanR {φ0, . . . , φn} will be called generalized polynomial.
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Section 2.2. Best L∞ (or minimax) approximation

Theorem 6
[Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902)]

Let {φ0, . . . , φn} be a Chebyshev system over [a, b]. Let f ∈ C ([a, b]). A
generalized polynomial p =

∑n
k=0 αkφk is the best approximation (or

minimax approximation) of f iff there exist n+ 2 points x0, . . . , xn+1,
a ⩽ x0 < x1 < · · · < xn+1 ⩽ b such that, for all k,

f (xk)− p (xk) = (−1)k (f (x0)− p (x0)) = ±∥f − p∥∞ .

In other words, p =
∑n

k=0 αkφk is the best approximation if and only if
the error function f − p has (at least) n+ 2 extrema, all global (of the
same absolute value) and with alternating signs.
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Section 2.2. Best L∞ (or minimax) approximation

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i its minimax

approximation,

ε(x) = f(x)− p(x) s.t. ∥ε∥∞ = supx∈[a, b]{|ε(x)|} is as
small as possible
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Section 2.2. Best L∞ (or minimax) approximation

Example:

f(x) = arctan(x) over [−0.9, 0.9]
p(x) = minimax, degree 15
ε(x) = p(x)− f(x)

∥ε∥∞ ≃ 10−8
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Section 2.2. Best L∞ (or minimax) approximation

Can you tell me what is the best approximation of cosx over [0, 10π] on
the Chebyshev system

{
1, x, x2

}
? on

{
1, x, . . . , xh

}
up to and including

h = 9?
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Section 2.2. Best L∞ (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)?
Kirchberger (1902))

Let {φ0, . . . , φn} be a Chebyshev system over [a, b]. Let f ∈ C ([a, b]). A
generalized polynomial p =

∑n
k=0 αkφk is the best approximation (or

minimax approximation) of f iff there exist n+ 2 points x0, . . . , xn+1,
a ⩽ x0 < x1 < · · · < xn+1 ⩽ b such that, for all k,

f (xk)− p (xk) = (−1)k (f (x0)− p (x0)) = ±∥f − p∥∞ .

In other words, p =
∑n

k=0 αkφk is the best approximation if and only if
the error function f − p has n+ 2 extrema, all global (of the same
absolute value) and with alternating signs.
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