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This course

is about rigourous/validated/reliable/certified numerical computations on
a machine in mathematical analysis.



(Binary) Floating Point (FP) Arithmetic

Given
a precision p=>1,
{ a set of exponents i, -, Emax.
A finite FP number x is represented by 2 integers:
e integer significand M, 2P~ 1 < [M| < 2P — 1,
@ exponent F, F < E < Emax

such that

min X

M
2r—1

T = x 2F.



|[EEE Precisions

IEEE 754 standard (1984 then 2008).

See http://en.wikipedia.org/wiki/IEEE_floating_point.

precision p | min. exponent | maximal exponent
Ein Emax
single (binary32) 24 —126 127
double (binary64) 53 —1022 1023
extended double 64 —16382 16383
quadruple (binary128) 113 —16382 16383

We have = = 577

and E iy < E < Emax.

My x 28 with 2771 < M| < 2P — 1



http://en.wikipedia.org/wiki/IEEE_floating_point

Rounding modes

In the IEEE 754 standard, the user defines an active rounding mode (or
rounding direction attribute) among:

@ round to nearest (default). If x € R, RN(x) is the floating-point
number that is the closest to x. In case of a tie, value whose
integral significand is even.

@ round towards +o0.
@ round towards —oo.

@ round towards zero.



You Shouldn't Trust Your Computer

S. Rump’s example (1988). Consider
Fla,b) = 333.756° + a2 (11a2b? — b9 — 121b% — 2) + 5.56° + 2%
and try to compute f(a,b) for a = 77617.0 and b = 33096.0. On an IBM
370 computer:
@ 1.172603 in single precision;
@ 1.1726039400531 in double precision;
@ 1.172603940053178 in extended precision.



You Shouldn't Trust Your Computer

S. Rump’s example (1988). Consider
Fla,b) = 333.756° + a2 (11a2b? — b9 — 121b% — 2) + 5.56° + 2%
and try to compute f(a,b) for a = 77617.0 and b = 33096.0. On an IBM
370 computer:
@ 1.172603 in single precision;
@ 1.1726039400531 in double precision;
@ 1.172603940053178 in extended precision.

And vyet, the exact result is —0.8273960599 - - -.
What about more recent systems? On a Pentium4 (gcc, Linux), Rump'’s
C program returns

@ 5.960604 x 10%° in single precision;
@ 2.0317 x 10%? in double precision;
@ —9.38724 x 107323 in extended precision.



(Certified 7) Quadrature

W. Tucker. Validated Numerics. Princeton University Press, 2011.
8
Let I = / sin(z + e”)dx. Let's evaluate it using MATLAB.
Jo

fen_str = ’sin(xtexp(x))’;
f = vectorize(inline(fcn_str));
a=0; b= 8;
>> q = quad(f,a,b)
q =
0.251102722027180

Actually, I € [0.3474,0.3475]...



(Certified 7) Quadrature
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Let J = /0 sin <(10_3 . .7;)2)3/2> dax.




(Certified 7) Quadrature
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N

Maple2023 : 10 digits — 0, 7499743685, 11 digits — no answer ;
Pari/GP: 0.7927730971479080755;
Mathematica and Chebfun fail to answer;
Sage : 0,7499743685 ;

Chen, '06: 0.7578918118.

WHAT IS THE CORRECT ANSWER?
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LetJ:/O snl(( 02+ (1=29) 3/2>d1’.
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How to overcome these problems?

o Use Computer Algebra (Maple, Mathematica) to perform exact
computations!



How to overcome these problems?

o Use Computer Algebra (Maple, Mathematica) to perform exact
computations! Problem with the speed of computations.

@ Interval Arithmetic: replace any number with an interval containing
it. Has to be used with extreme caution.



An Example!: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

(] Chaser
o Target

1Courtesy of Mioara Joldes
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Reduced Equation
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B 1+ ecosv

c initial conditions, e orbital eccentricity

2x107

Pv) m—

1.5x107 |

1x107

5x10°

[

-5x106 |

-1x107 |

-1.5x107
0 n 2n 3n 4n 5n 6n

v (rad)

2Courtesy of Mioara Joldes



An Example?: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

2 () + (4 L) Av)=c

B 1+ ecosv

c initial conditions, e orbital eccentricity

2x107

(v)
Lsx107 error bound & 2
.5x107 |

1x107
5x10° |
0

-5x106 |

-1x107 |

-1.5x107
0 n 2n 3n 4n 5n 6n

v (rad)

2Courtesy of Mioara Joldes



An Example?: Tschauner-Hempel Equation

Relative Motion in Keplerian Dynamics

Reduced Equation

2 () + (4 L) Av)=c

B 1+ ecosv

c initial conditions, e orbital eccentricity
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Near-Earth Objects

Asteroids, comets, etc. whose orbit can get close to the Earth: risk of
collision.

19
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Asteroids, comets, etc. whose orbit can get close to the Earth: risk of
collision.

Monitoring programs: https://cneos. jpl.nasa.gov/ (NASA) et
https://neo.ssa.esa.int/ (ESA).

Torino scale: 0 (no risk of a collision) - 10 (collision is certain, possibly
causing a global climatic catastrophe).
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Near-Earth Objects

Asteroids, comets, etc. whose orbit can get close to the Earth: risk of
collision.

Monitoring programs: https://cneos. jpl.nasa.gov/ (NASA) et
https://neo.ssa.esa.int/ (ESA).

Torino scale: 0 (no risk of a collision) - 10 (collision is certain, possibly
causing a global climatic catastrophe).

Question: certified trajectory?
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Near-Earth Objects

http://en.wikipedia.org/wiki/99942_Apophis
99942 Apophis is a near-Earth asteroid that caused a brief
period of concern in December 2004 because initial observations

indicated a probability of up to 2.7 % that it would strike the
Earth in 2029.

Estimates: diameter of 330 metres (1,080 ft) and mass of 40 megatonnes
(within a factor of three).

P. Di Lizia's PhD? gives algorithms to compute a “certified trajectory’.

3P. Di Lizia, Robust Space Trajectory and Space System Design using Differential
Algebra, Politecnico di Milano, 2008.
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Near-Earth Objects

http://en.wikipedia.org/wiki/99942_Apophis
99942 Apophis is a near-Earth asteroid that caused a brief
period of concern in December 2004 because initial observations
indicated a probability of up to 2.7 % that it would strike the
Earth in 2029.

Estimates: diameter of 330 metres (1,080 ft) and mass of 40 megatonnes
(within a factor of three).

P. Di Lizia's PhD? gives algorithms to compute a “certified trajectory’.

Question: how to automate this?

3P. Di Lizia, Robust Space Trajectory and Space System Design using Differential
Algebra, Politecnico di Milano, 2008.
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Hilbert's 16th problem

Let n € N, P,Q € R[X,Y], deg P, deg @ < n.

We consider
T = P(.’L‘,y),
¥ = Q(z,y).

Limit cycle: periodic orbit whose neighbouring trajectories spiral either
towards or away from.

Hilbert's 16th problem (second part): For a given n, maximum number
of limit cycles?

14
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An example of limit cycle*

r=1Yy
g=—z+(1-2%y
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Van der Pol oscillator:
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An example of limit cycle*

Van der Pol oscillator:

4Courtesy of Florent Bréhard
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Hilbert's 16th Problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number #(n) of limit cycles
a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

@ 1923: P. Dulac (incorrectly) proved that a
single polynomial vector field has a finite

number of limit cycles
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Hilbert's 16th Problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number #(n) of limit cycles
a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

@ 1923: P. Dulac (incorrectly) proved that a
single polynomial vector field has a finite

number of limit cycles

@ 1981: Y. S. II'Yashenko found a major gap in
Dulac’s proof

@ 1991: New proofs of Dulac's result by Y. S.
[I"'Yashenko and J. Ecalle

But even H(2) < oo is open! S S
Some lower bounds: H(2) > 4, H(3) > 13,
H(4) > 22.
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Hilbert's 16th problem

Hilbert's 16th problem (second part)

For a given integer n, what is the maximum number 7 (n) of limit cycles
a polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

V. I. Arnold (1977) suggested to study a restriction of this question, the
so-called weak (or infinitesimal) Hilbert's 16th problem.

Moreover, he established a link between the number of limit cycles and
the number of zeros of a certain integral.

(Formal) Proof of H(4) > 24.

17
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Chapter 1. Polynomial approximations

In this chapter, we present various theoretical and algorithmic results
regarding polynomial approximations of functions.

We will mainly deal with real-valued continuous functions over a compact
interval [a,b], a,b € R, a < b.

We will denote C ([a, b]) the real vector space of continuous functions
over [a, b].



Polynomial approximations

In the framework of function evaluation one usually works with the two
following norms over this vector space, namely

o the least-square norm L?: given a weight! function w € C ([a, b)), if
dx denotes the Lebesgue measure, we write

b
g€ L?([a,b] ,w,dz) if/ w (z) g (x))* dz < oo,

and then we define

19l \/ / 2| de:

1Here, we will assume that it means that w € C((a,b)) and w > 0 almost
everywhere.



Polynomial approximations

In the framework of function evaluation one usually works with the two
following norms over this vector space, namely

o the supremum norm (aka Chebyshev norm, infinity norm, L>°
norm) : if g is bounded on [a, b], we set

19lloc = sup g (2)|

z€la,b]

(if f continuous, we have ||g|| ., = max,¢[q.5] |9 (%))



Best polynomial approximations

One of the main questions we are interested in here is the following. We
shall consider both the case ||-|| = ||-||,, and the case ||-|| = ||| .-

Question. Given f € C([a,b]) and n € N, minimize || f — p|| where p
describes the space R, [x] of polynomials with real number coefficients
and degree at most n.



Best polynomial approximations

In the L? case, the answer is easy to give. The space
C ([a,b]) C L*(|a,b],w,dz) which is a Hilbert space, i.e. a vector space
equipped with an inner product

b
(f.9) = / f (@) g (2) w () de,

and ||-||, is the associated norm, for which L? is complete.



Best polynomial approximations

In the L? case, the answer is easy to give. The space
C ([a,b]) C L*(|a,b],w,dz) which is a Hilbert space, i.e. a vector space
equipped with an inner product

b
()= [ 1@ 9@ wiz)da,
and ||-||, is the associated norm, for which L? is complete.

The best polynomial approximation of degree at most n is the projection
p=prt (f) of f over R, [z]. More details on the L? case later on.

The situation in the L case is more intricate and we will focus on it in
the sequel of this chapter.



Section 2.1. Density of the polynomials in (C ([a,b]), ||-]|..)

For all f € C([a,b]) and n € N, let

En(f):pmf If =Pl

We first show that E,, (f) — 0 as n — oo (Weierstral theorem, 1885).



Section 2.1. Density of the polynomials in (C ([a,b]), ||-]|..)

For all f € C([a,b]) and n € N, let

E,(f)= inf - .
()= nf If ~pl

We first show that E,, (f) — 0 as n — oo (Weierstral theorem, 1885).

Theorem 1

For all f € C ([a,b]) and for all e > 0, there existsn € N, p € R,, []
such that |[p — fl|, <e.

Proofs by Runge (1885), Picard (1891), Lerch (1892 and 1903), Volterra
(1897) Lebesgue (1898), Mittag-Leffler (1900), Fejér (1900 and 1916),
Landau (1908), la Vallée Poussin (1908), Jackson (1911), Sierpinski
(1911), Bernstein (1912), Montel (1918).



Section 2.1. Density of the polynomials in (C ([a,b]), ||-]|..)

Note that we only used the values of the B, (f,z) for 0 < n < 2. In fact,
we have the following result.

Theorem 2

(Bohman and Korovkin) Let L,, a sequence of monotone linear operators
on C (|a, b)) ,that is to say: for all f, g € C ([a, b))

o Ly, (uf + Ag) = ALy, (f) + Ly, (g) for all X\, 1 € R,

o if f(x) > g(x)forallz € [a,b] then

L,f(z) 2 L,g (x)forallz € [a,b],

the following conditions are equivalent

@ L,f — f uniformly for all f € C ([a,b]);

@ L, f — funiformly for the three functions xz — 1,xz, z2;

© L,1—1 and (Lypi)(t)— O uniformly in t € [a,b] where

@ T € [a,b] = (t—z)°.

See Cheney's book for a proof.



Section 2.1. Density of the polynomials in (C ([a,b]), ||-]|..)

A refinement of WeierstraB's theorem that gives the speed of
convergence is obtained in terms of the modulus of continuity.

The modulus of continuity of f is the function w defined as

foralld >0, w(d)= sup |f(z) = f(y)l
|z —y| <4,
z,y € [a,b]

If f is a continuous function over [0, 1], w its modulus of continuity, then

1f = Bulf.2)loe = S0 (n7).



Section 2.1. Density of the polynomials in (C ([a,b]), ||-]|..)

Corollary 4

When f is Lipschitz continuous, E,(f) = O(n=1/2).

For improvements and refinements, see Section 4.6 of Cheney’s book or
Chapter 16 of Powell's book for a presentation of Jackson theorems.

-10-



Section 2.2. Best L™ (or minimax) approximation -
Existence

The infimum E,, (f) is reached:

Proposition

Let ( E,||-||) be a normed R-vector space, let F' be a finite dimensional
subspace of (E, ||-||). For all f € E, there exists p € F such that

lp — fll = minger ||g — f||. Moreover, the set of best approximations to
a given f € E is convex.

11-



Section 2.2. Best L™ (or minimax) approximation.
Uniqueness

The best L? approximation is unique, which is not always the case in the
L setting.
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Section 2.2. Best L™ (or minimax) approximation.
Uniqueness

The best L? approximation is unique, which is not always the case in the
L setting.

A counter-example?

In the case of L, we need to introduce an additional condition known
as the Haar condition.

19



Section 2.2. Best L*> (or minimax) approximation

Consider n + 1 functions o, .. ., @, defined over [a,b]. We say that
©0, - - -, p satisfy the Haar condition iff

@ the ; are continuous;
@ and the following equivalent statements hold:
o for all zo,z1,..., 2, € [a,b],
lpi (z5) locijan =0 & Fi#j,2i = 5,

e given pairwise distinct zo, ..., Z, € [a,b] and values yo, ..., yn,
there exists a unique interpolant

n
p:Zak@k, with ax € R,Vk =0,...,n, s.t. p(x;) = v,
k=0

e any p=> 1 ,orpr # 0 has at most n distinct zeros.

13



Section 2.2. Best L*> (or minimax) approximation

A set of functions that satisfy the Haar condition is called a Chebyshev
system. The prototype example is ¢; (1) = z*, for which we have

©o (zo) -+ @n (o) Loy

= | =Va=1l@i-ay)

0o (Tn) -+ o () 1 .- g i<j

33

1a-



Section 2.2. Best L*> (or minimax) approximation

Other examples include (exercise: prove that it is indeed the case!):
o {etor . eMT}for Ng < Ay < or < Ay
e {1,cosx,sinz,...,cos (nz),sin (nx)} over [a,b] where
0<a<b<2m

o {z% ... 2%}, ag <--- < ay, over [a,b] with a > 0.

1B



Section 2.2. Best L*> (or minimax) approximation

Let E be a real vector space, e1,é€s,...,e, € E, we will denote
Spang {e1,...,en} the set {d°)7, aper;er, ... e, € R}

If {©0,--.,%n} is a Chebyshev system over [a,b], any element of
Spang {®o, ..., pn} will be called generalized polynomial.

16—



Section 2.2. Best L*> (or minimax) approximation

Theorem 6
[Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902)]

Let {®o,...,pn} be a Chebyshev system over [a,b]. Let f € C ([a,b]). A
generalized polynomial p = >"}'_, apr is the best approximation (or
minimax approximation) of f iff there exist n + 2 points xg, ..., ZTp+1,
a< )< << xpy1 < bsuch that, for all k,

f(zk) —p () = (=1)" (f (xo) = p(z0)) = £ | f — Pl oo -

17



Section 2.2. Best L*> (or minimax) approximation

Theorem 6
[Alternation Theorem. Chebyshev? Borel (1905)? Kirchberger (1902)]

Let {®o,...,pn} be a Chebyshev system over [a,b]. Let f € C ([a,b]). A
generalized polynomial p = >"}'_, apr is the best approximation (or
minimax approximation) of f iff there exist n + 2 points xg, ..., ZTp+1,
a< )< << xpy1 < bsuch that, for all k,

f(zk) —p () = (=1)" (f (xo) = p(z0)) = £ | f — Pl oo -

In other words, p = Y"1, cupy, is the best approximation if and only if
the error function f — p has (at least) n + 2 extrema, all global (of the
same absolute value) and with alternating signs.

17



Section 2.2. Best L*> (or minimax) approximation

flz) = e/ ze0,1], p(z) =312, ciz’ its minimax
approximation,

18



Section 2.2. Best L*> (or minimax) approximation

1
f(z) = el/cos(:t), z €10,1], p(x) = 22120 c;zt its minimax
approximation, &(z) = f(x) — p(x)

~

18



Section 2.2. Best L*> (or minimax) approximation

f(.l“) _ el/cos(m) = [ ]Y p(a:) _
approximation, e(x) = f(z) — p(z)
small as possible

210 c;zt its minimax
st. [lelleo = SUPgeq, y{le(@)]} is as

4e-05

Iy s
7 -

-1e-05 |-

-2e-05 -

-3e-05

-4e-05

18



Section 2.2. Best L*> (or minimax) approximation

Example:

f(z) = arctan(x) over [—0.9,0.9]
p(z) = minimax, degree 15

e(z) = p(x) - f(@)

1.5e-08

1e-08
5e-09
lell o ~ 107"
-5e-09

-1e-08

-1.5e-08




Section 2.2. Best L*> (or minimax) approximation

Can you tell me what is the best approximation of cosz over [0,107] on
the Chebyshev system {1,x,x2}? on {1,x, e ,xh} up to and including
h =97

-20-



Section 2.2. Best L*> (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)?

Kirchberger (1902))

Let {¢o,...,pn} be a Chebyshev system over [a,b]. Let f € C([a,b]). A
generalized polynomial p = >"}'_, apr is the best approximation (or
minimax approximation) of f iff there exist n + 2 points xg, ..., Tpt1,
a< Ty < << xpr1 < b such that, for all k,

f(zk) —p () = (=1)* (f (xo) = p(20)) = £ | f — Pl oo -

1.



Section 2.2. Best L*> (or minimax) approximation

Theorem 7 (Alternation Theorem. Chebyshev? Borel (1905)?

Kirchberger (1902))

Let {¢o,...,pn} be a Chebyshev system over [a,b]. Let f € C([a,b]). A
generalized polynomial p = >"}'_, apr is the best approximation (or
minimax approximation) of f iff there exist n + 2 points xg, ..., Tpt1,
a< Ty < << xpr1 < b such that, for all k,

f(zk) —p () = (=1)* (f (xo) = p(20)) = £ | f — Pl oo -

In other words, p = Y}, cupy, is the best approximation if and only if
the error function f — p has n + 2 extrema, all global (of the same
absolute value) and with alternating signs.

1.



