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. . . . 1
Compute a Rigorous Polynomial Approximation of m
X

e Rational function ~» not a polynomial (of finite degree)

e Taylor model: P = (Po + Pix+ -+ Pox",e)  ~
Q=(Qo+ Qix+---+ Qux",7)
P(x)Q(x)=1 = P, depends explicitly on Po,...,P, and Qo,..., Q-1
How to determine 7 rigorously?

e Chebyshev model: P = (Po + Pix + -+ + Py Th(x),e) ~
Q=(Qo+ Qix+ -+ Qi Tu(x),n)
P(x)Q(x) =1 = not a finite formula, since
To(3) Tm(x) = 3(Totm(X) + Tjn—m|(x))
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Matrix inverse via Gaussian elimination using interval arithmetics
min(i,J)

e Example: the Lehmer matrix L, = <7) is well-conditionned
max(7, J) 1<ij<n

e Gaussian elimination (using binary64 FP arithmetic) computes L, * accurately

max error

5.x107

1.x107"3
5.x107"

1.x107
5.x1071

50 100 150 200"

maximum error of L,Tan — I, computed

using binary64 Gaussian elimination



Some Limitations of the Self-Validating Approach

Matrix inverse via Gaussian elimination using interval arithmetics

min(i,J)

e Example: the Lehmer matrix L, = < —
max(/, j)

) is well-conditionned
1<i,j<n

e Gaussian elimination (using binary64 FP arithmetic) computes L, * accurately

e Intervals of pivots using interval arithmetic grow much faster
= interval Gaussian elimination fails

min prec

max error 400
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100|
n
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maximum error of L;an — I, computed minimum FP precision needed s.t. interval
using binary64 Gaussian elimination Gaussian elimination on L, does not fail
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A Posteriori Validation Approach

e F:X =Y, XandY Banach spaces, Solve F(x)
X=Y=@C0) I lle). F()=gf-1=0, " =

=0 ~ x'eX
K
g
e x € X a numerical solution: F(X)=0 ~ Xx=~x"
= S : 1
Compute f = p = Z aiTi € R,[x] C X by interpolating = at the
g

i=0
Chebyshev nodes

e A posteriori validation ~ ~» recover a rigorous bound ¢ > ||Xx — x™||

The pair (p, €) is a Rigorous Polynomial Approximation for f* = =
g

= Use a fixed-point theorem!
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Banach Fixed-Point Theorem

e Convert F(x) = 0 into an equivalent T(x)=x
= T :X — X must be

Banach Fixed-Point Theorem

If one can rigorously check:

e T(B(x,r)) C B(x,r)
e T is A-contracting” over B(x,r) with A <1

Then T has a unique fixed-point x* in B(X, r)

e Find “optimal” radius r that satisfies the theorem

* it means that |7 (x) — T(x")|| < A|x — X'|| for all x,x" € B(X,r)
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A Linear Example: Division of RPAs (1/3)

Compute f = %, h(x) # 0 over I:

e Numerical interpolation  ~ f % in Ry[x] € X = (C(I), [ - [loo)

e We want to solve:

F(f)=g where F:X =X, f— hf

= F is linear

e Since F is linear, it coincides with its Fréchet derivative DFr : X — X

f(f+(5f) = h(f+5f) = \hL-‘r— i(& ~ fo((Sf) = ]:(5,() = hdr
F(f)  DFf(6¢)
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A Linear Example: Division of RPAs (2/3)

Compute f = %, h(x) # 0 over I:

e Construct a Newton-like fixed-point operator 7 : X — X:

T(f)=f—A(F(f)—g) where AxDF;/': X — X

o DF; ' : 6 % so we define A(dr) = @dr using ¢ = %

T(f)=f—G(hf—g) ~ T()=f & =%

e Check the contraction property of T:
IT(F) = T(FE) = [IIf — &(hf — g)] = [f' — §(hf" = g)]|
=@ =en(f - < 1-&hllIf -
—_————
=\

= We need \ = |1 —¢h|| <1
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A Linear Example: Division of RPAs (3/3)

Compute f = % h(x) # 0 over I:

e Check the stability condition to apply the Banach fixed-point theorem

Banach Fixed-Point Theorem

If one can rigorously check:

e T is A-contracting” over B(x,r) with A <1

Then T has a unique fixed-point x* in B(X, r)

e The stability condition is encoded as:
d+xr<r, d=|T(F)—fl =Ig(hf —g)|

. " . d
= the "best” bound ris r = Y



Division of RPAs — The Algorithm

Algorithm RPADiv

e Input: RPAs g and h, approximation degree n € N
e Output: degree-n RPA f representing % rigorously

1. Compute f~é& using degree-n Chebyshev interpolation

——

2. Compute ¢ ~ h using degree-n Chebyshev interpolation
3. Compute A = ||1 — @hl| and FAIL if A >1
4. Compute d = ||3(hf — g)||

5. Compute r = - dA and RETURN RPA f = (f,r)

\.

Algorithm RPADiv is correct

If RPADiv(g, h) does not fail, then it returns an RPA f such that

fora||g€g7h€h,wehavef=%ef.
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A Nonlinear Example: Square Root of an RPA (1/3)

Compute f = /g, g(x) > 0 over [:

e Numerical interpolation  ~ f & \/g in Ry[x] € X = (C(I), || - |loo)

e We want to solve:

F(f)=g where F:iX =X, s f?
= F is nonlinear (quadratic)

e Since F is nonlinear, its Fréchet derivative DFr : X — X depends on f:

f(f+5f):(f+5f)2:\f;+ 2f5¢ +67 ~ DF¢(d¢) = 2f5¢

F(f)  DF(6¢)



A Nonlinear Example: Square Root of an RPA (2/3)

Compute f = /g, g(x) > 0 over [:

e Construct a Newton-like fixed-point operator 7 : X — X:
T(f)=f—A(F(f)—g) where Ax~DF/': X — X
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Compute f = /g, g(x) > 0 over [:
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T(f)=f—A(F(f)—g) where Ax~DF/': X — X

‘ .
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A Nonlinear Example: Square Root of an RPA (2/3)

Compute f = /g, g(x) > 0 over [:

e Construct a Newton-like fixed-point operator 7 : X — X:
T(f)=f—A(F(f)—g) where Ax~DF/': X — X

‘ .

° D]—T1 D OF — %, so we define A(dr) = @dr using ¢ ~ % ~ >

T(F)=f—-3(f*—g) . T(f)=f & f=+g

B

e Check the contraction property of T, for f,f' € B(;r):

IT(F) — T(F) = IlIf — B(F> — g)] — [ — &(* — gl
=L =&(F+NF =N < 1=a(F+F)IF - F|
N P L7

<A(r)
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A Nonlinear Example: Square Root of an RPA (2/3)

Compute f = /g, g(x) > 0 over [:

e Construct a Newton-like fixed-point operator 7 : X — X:
T(f)=f—A(F(f)—g) where Ax~DF/': X — X

‘ .

° D]—T1 D OF — %, so we define A(dr) = @dr using ¢ ~ % ~ >

T(F)=f—-3(f*—g) . T(f)=f & f=+g

B

e Check the contraction property of T, for f,f' € B(;r):

IT(F) — T(F) = IlIf — B(F> — g)] — [ — &(* — gl
=L =&(F+NF =N < 1=a(F+F)IF - F|
N P L7

<A(r)
= T is A(r) contracting over B(f, r), where:

A(r) = ||1 — 25F] + 2|1l r
—_——
Ao A1
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A Nonlinear Example: Square Root of an RPA (2/3)

Compute f = /g, g(x) > 0 over [:

e Construct a Newton-like fixed-point operator 7 : X — X:
T(f)=f—A(F(f)—g) where Ax~DF/': X — X

‘ .

° D]—T1 D OF — %, so we define A(dr) = @dr using ¢ ~ % ~ >

T(F)=f—-3(f*—g) . T(f)=f & f=+g

B

e Check the contraction property of T, for f,f' € B(;r):
IT(F) = T(E) = IlIF — B(F> — &) = [f' — B(F* = &)]ll
=L =&(F+NF =N < 1=a(F+F)IF - F|
| S

<A(r)
= T is A(r) contracting over B(f, r), where:

A(r) = ||1 — 25F] + 2|1l r
—_——
Ao A1

= r must be small enough to ensure A(r) <1 10
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Compute f = /g, g(x) > 0 over [:
e Check the stability condition to apply the Banach fixed-point theorem

Banach Fixed-Point Theorem

If one can rigorously check:
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A Nonlinear Example: Square Root of an RPA (3/3)

Compute f = /g, g(x) > 0 over [:
e Check the stability condition to apply the Banach fixed-point theorem

Banach Fixed-Point Theorem

If one can rigorously check:

e T is A-contracting”™ over B(X, r) with A <1
Then T has a unique fixed-point x* in B(X, r)

The stability condition is encoded as:

d+Ar)r<r, d=|T(F) - fll = |15(F* - g)I

e M\ir? 4 (Mo — 1)r +d < 0 has positive real solutions iff:
A= (1—Xo)* —4\d >0

1—Xo—VA

= Return the smallest root: r := 11
2)\1



Square Root of an RPA — The Algorithm

Algorithm RPASqrt

e Input: RPA g, approximation degree n € N

e Output: degree-n RPA f representing /g rigorously

1. Compute fr /g using degree-n Chebyshev interpolation

~ 1 . . .
2. Compute ¢ ~ 27 using degree-n Chebyshev interpolation

3. Compute Ao = ||1 — 25| and FAIL if Ao > 1

4. Compute A1 = 2|/l

5. Compute d = ||3(F2 — g)||

6. Compute A = (1 — Xg)? — 4)\1d and FAIL if A <0

5. Compute r := 1-do—-vA /\20)\7 VA and RETURN RPA f = (F, r)
1

Algorithm RPADiv is correct
If RPASqrt(g) does not fail, then it returns an RPA f such that
for all g € g, we have f = \/g € f. 7%



Further Examples of Fixed-Point A Posteriori Validation (1/2)

e Roots of univariate polynomials:
p(x)=0 ~ z1,...,zs st p(x)=(x—2z1)...(x — zn)
e Roots of univariate analytic functions:
f(x) =0 ~- isolate one/all root(s) of f
e Roots of systems of multivariate polynomial/analytic functions:

)“1(X17 oo 7Xr,) = 0
~» isolate one/all solutions
fo(x1,...,xn) =0

See for instance: Siegfried M. Rump, Verification methods: Rigorous results
using floating-point arithmetic. Acta Numerica. 2010;19:287-449.

'3}



Further Examples of Fixed-Point A Posteriori Validation (2/2)

e Solving linear systems:
Ax=b ~» recover x = (X1,...,Xn)
e Eigenvalue problems:
Av=Av ~» recover eigenvalue/eigenvector pair (A, v)
D = diag(\1, ..., \n) = eigenvalues
A ~ diagonalize A= PDP*: g(h ) £
P € C"™" = eigenvectors

e Ordinary differential equations (ODEs):

Y'(x) = f(x, y(x))

N ~» compute p = (p,¢) for y

y(0)=veR

e Partial Differential Equations (PDEs), Delay Differential Equations

(DDEs), etc.

See for instance: Siegfried M. Rump, Verification methods: Rigorous results
using floating-point arithmetic. Acta Numerica. 2010;19:287-449.

14



Rigorous Numerics for Hilbert’s 16th Problem
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Polynomial Vector Fields in the Plane




Polynomial Vector Fields in the Plane

x = P(x,y
{_ Go) P, Q € R[x, y]
y=Q(x,y)
4 =
20 kvl
v ol
—2h : Bl
43 ) 3

o (v,a)=(x,v) = (v, Q(x,v)) in mechanics

Examples: o (4, ;) = (P(u, i), Q(u, 7)) in electricity
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(For example, (x,y) = (—y,x) produces a continuum of periodic orbits but no
limit cycles!)
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Limit Cycles

limit cycle = isolated periodic orbit

(For example, (x,y) = (—y,x) produces a continuum of periodic orbits but no
limit cycles!)

0
T
. x=y
Van der Pol oscillator .



Hilbert’s 16th Problem

Hilbert’s 16th problem (second part)

For a given integer 1, what is the maximum number H(n) of limit cycles a
polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900
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Hilbert’s 16th problem (second part)

For a given integer 1, what is the maximum number H(n) of limit cycles a
polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

e 1923: H. Dulac (incorrectly) proved that a
single polynomial vector field has a finite

number of limit cycles
e 1981: Y. S. lI'Yashenko found a major gap
in Dulac’s proof

e 1991: New proofs of Dulac’s result by Y.
S. II'Yashenko and J. Ecalle -k

e But even (2) < oo is open!



Hilbert’s 16th Problem

Hilbert’s 16th problem (second part)

For a given integer 1, what is the maximum number H(n) of limit cycles a
polynomial vector field of degree at most n in the plane can have?

D. Hilbert, International Congress of Mathematicians, Paris, 1900

e 1923: H. Dulac (incorrectly) proved that a
single polynomial vector field has a finite

number of limit cycles
e 1981: Y. S. lI'Yashenko found a major gap ,
in Dulac’s proof

e 1991: New proofs of Dulac’s result by Y.
S. II'Yashenko and J. Ecalle -k

e But even (2) < oo is open!

e Some lower bounds: #H(2) > 4,
#(3) > 13, H(4) > 28.



Infinitesimal Hilbert’s 16th Problem

H(x,y) = (x* —0.9)> 4+ (y* — 1.1)°

T. Johnson, A quartic system with twenty-six

limit cycles, Experimental Mathematics, 2011
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x = —8,H(x,y) = 4y(y* - L.1)
y = OxH(x,y) = 4x(x* — 0.9)

T. Johnson, A quartic system with twenty-six

limit cycles, Experimental Mathematics, 2011
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Infinitesimal Hilbert’s 16th Problem
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T. Johnson, A quartic system with twenty-six

limit cycles, Experimental Mathematics, 2011



Infinitesimal Hilbert’s 16th Problem

H(x,y) = (x* —0.9)> 4+ (y* — 1.1)°

{x =4y(y? —1.1)

y = 4x(x* — 0.9) — 0.4y + 0.46x%y

T. Johnson, A quartic system with twenty-six

limit cycles, Experimental Mathematics, 2011



Infinitesimal Hilbert’s 16th Problem

Infinitesimal Hilbert’s 16th problem

For a given integer n, what is the
maximal number Z(n) of limit cycles
a perturbed Hamiltonian vector field

of the form:
X = _a}’H(Xy.y) + E1"()<7.)/)
y =0«H(x,y) +eg(x,y)

can have when ¢ — 0, with:
e H(x,y) a polynomial potential

function of degree n+1

e f,g polynomial perturbations of
degree n

T. Johnson, A quartic system with twenty-six

limit cycles, Experimental Mathematics, 2011



Infinitesimal Hilbert’s 16th Problem

Infinitesimal Hilbert’s 16th problem

For a given integer n, what is the
maximal number Z(n) of limit cycles
a perturbed Hamiltonian vector field
of the form:

X = _a}’H(Xy.y) + E1"()<7.)/)
y = 0xH(x,y) + eg(x, y)

can have when ¢ — 0, with:
e H(x,y) a polynomial potential
function of degree n+1

e f,g polynomial perturbations of

) ) ) degree n
T. Johnson, A quartic system with twenty-six o Z n) < oo for all n

limit cycles, Experimental Mathematics, 2011
e Pessimistic upper bounds



A Fundamental Tool: the Poincaré-Pontryagin Theorem
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A Fundamental Tool: the Poincaré-Pontryagin Theorem
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Poincaré-Pontryagin theorem

The Abelian integral Z(h) approximates the
x = —0,H(x,y) +ef(x, y) displacement function d(h) for small :

y = 0H(x,y) +eg(x,y) d(h) = £(Z(h) + O(c))  when e —0

limit cycles = changes of sign of Z(h) = simple zeros of Z(h)



