Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

We now would like to extend this notion of natural interval extension to a larger class of functions.

Definition

We call basic (or standard) functions the elements of

$$\mathfrak{S} = \left\{ \sin, \cos, \exp, \tan, \log, x^{p/q}, \ldots \right\}$$

for which we can determine the exact range over a given interval based on a simple rule.

These functions are said to have a sharp interval enclosure.

Definition

We call elementary function a symbolic expression built from constants and basic functions using arithmetic operations and composition. The class of elementary functions will be denoted \mathcal{E} . A function $f \in \mathcal{E}$ is given by an expression tree (or dag, for directed acyclic graph).

Definition

An interval valued function $F:X\cap\mathbb{IR}\to\mathbb{IR}$ is inclusion isotonic over $X\in\mathbb{IR}$ if $Z\subset Z'\subset X$ implies $F(Z)\subset F(Z')$.

Definition

An interval valued function $F:X\cap\mathbb{IR}\to\mathbb{IR}$ is inclusion isotonic over $X\in\mathbb{IR}$ if $Z\subset Z'\subset X$ implies $F(Z)\subset F(Z')$.

Theorem

Given an elementary function f and an interval X over which the natural interval extension F of f is well-defined:

- lacksquare F is inclusion isotonic over X;
- $\textbf{2} \ R\left(f,X\right) \subset F\left(X\right).$

Example

Consider

$$f(x) = (\cos x - x^3 + x) (\tan x + 1/2)$$

over $[0,\pi/4]$. To show that f has no zero in this range, we compute the natural interval extension

$$f([0, \pi/4]) = \left[\frac{\sqrt{2}}{2} - \frac{\pi^3}{64}, 1 + \frac{\pi}{4}\right] \left[\frac{1}{2}, \frac{3}{2}\right] \subset [0.11, 2.68].$$

-29-

Example

Consider

$$f(x) = (\cos x - x^3 + x) (\tan x + 1/2)$$

over $[0,\pi/4]$. To show that f has no zero in this range, we compute the natural interval extension

$$f([0, \pi/4]) = \left[\frac{\sqrt{2}}{2} - \frac{\pi^3}{64}, 1 + \frac{\pi}{4}\right] \left[\frac{1}{2}, \frac{3}{2}\right] \subset [0.11, 2.68].$$

Exercise

Show that $f(x) = x - \sin x + 2/5$ has no zero over $[0, \pi/4]$.

Theorem

Let $X \in \mathbb{IR}$. Let f be an elementary function such that any subexpression of f is Lipschitz continuous. Let F be an inclusion isotonic interval extension such that F(X) is well-defined. Then, there exists $\kappa > 0$, depending on F and X, such that, if $X = \bigcup_{i=1}^k X_i$, with $X_i \in \mathbb{IR}$ for all i,then

$$R(f,X) \subset \bigcup_{i=1}^{k} F(X_i) \subset F(X)$$

and

$$\operatorname{rad}\left(\bigcup_{i=1}^{k} F\left(X_{i}\right)\right) \leqslant \operatorname{rad}\left(R\left(f, X\right)\right) + \kappa \max_{i=1, \dots, k} \operatorname{rad}X_{i}.$$

-30-

However, the number of subdivisions needed may be very large.

Example

Let $f(x) = e^{1/\cos x}$, and let p be a degree-10 minimax approximation of f over [0,1]. Let

$$\varepsilon\left(x\right)=f\left(x\right)-p\left(x\right).$$

Using the natural interval extension of ε , we get $\|\varepsilon\| \le 298$. But one can show that obtaining the actual value $\|\varepsilon\| \approx 3.8325 \cdot 10^{-5}$ by subdivision would require about 10^7 subintervals.

Newton method

Theorem

Let $X \in \mathbb{IR}$, let $f \in \mathcal{C}^2(X)$, s.t. $f'(x) \neq 0$ for all $x \in X$ and f has a unique, simple zero x^* in X. Then if x_0 is chosen sufficiently close to x^* , the sequence $(x_k)_{k \in \mathbb{N}}$ defined by

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 for $k = 0, 1, 2, ...$

converges quadratically fast toward x^{\ast} : there exists a constant C such that

$$\lim_{k \to +\infty} x_k = x^* \text{ and } |x_{k+1} - x^*| \leqslant C|x_k - x^*|^2.$$

Let $X\in\mathbb{IR}$, let $f\in\mathcal{C}^1(X)$.

Let $X\in\mathbb{IR}$, let $f\in\mathcal{C}^1(X)$. Let F' an interval extension of f'. We assume $0\notin F'(X)$.

Let $X \in \mathbb{IR}$, let $f \in \mathcal{C}^1(X)$.

Let F' an interval extension of f'. We assume $0 \notin F'(X)$.

Start with $X_0 = X \in \mathbb{IR}$.

-33-

Let $X\in \mathbb{IR}$, let $f\in \mathcal{C}^1(X)$.

Let F' an interval extension of f'. We assume $0 \notin F'(X)$.

Start with $X_0 = X \in \mathbb{IR}$.

Let $x_k \in X_k$.

Let

$$X_{k+1} = x_k - \frac{f(x_k)}{F'(X_k)}.$$

Start with $X_0=X\in\mathbb{IR}$.

Start with $X_0 = X \in \mathbb{IR}$.

Let m_k denote the middle of X_k .

Let

$$X_{k+1} = m_k - \frac{f(m_k)}{F'(X_k)}.$$

We first define the interval Newton operator

$$N(X) = m - \frac{f(m)}{F'(X)}$$
, with $m = \text{mid}(X)$.

Now, we start with $X_0 = X \in \mathbb{IR}$.

We first define the interval Newton operator

$$N(X) = m - \frac{f(m)}{F'(X)}$$
, with $m = \text{mid}(X)$.

Now, we start with $X_0 = X \in \mathbb{IR}$. Let m_k denote the middle of X_k and

$$X_{k+1} = N(X_k) \cap X_k, k = 0, 1, 2, \dots$$

Theorem

Assume that N(X) is well defined. If X contains a unique, simple zero x^* , then so do all iterates $X_k, k \in \mathbb{N}$. Moreover, the intervals X_k form a nested sequence converging to $[x^*]$.

Theorem

Brouwer (1910)

Every continuous function f from a convex compact subset K of a Euclidean space to K itself has a fixed point.

Theorem

Let $X \in \mathbb{IR}$, $f \in \mathcal{C}^1(X)$. Let F' an interval extension of f'. We assume $0 \notin F'(X)$.

Let $I\in\mathbb{IR}$, $x\in I\subset X$, $N(I,x):=x-F'(I)^{-1}f(x)$

If N(I) is well defined, then the following statements hold:

- (1) if I contains a zero x^* of f, then so does $N(I,x)\cap I$;
- (2) if $N(I,x) \cap I = \emptyset$, then I contains no zero of f;
- (3) if $N(I,x)\subseteq I$, then I contains a unique zero of f.

Theorem

Let $X\in\mathbb{IR},\ f\in\mathcal{C}^1(X).$ Let F' an interval extension of f'. We assume $0\notin F'(X).$

Let $I \in \mathbb{IR}$, $x \in I \subset X$, $N(I,x) := x - F'(I)^{-1}f(x)$

If N(I) is well defined, then the following statements hold:

- (1) if I contains a zero x^* of f, then so does $N(I,x)\cap I$;
- (2) if $N(I,x) \cap I = \emptyset$, then I contains no zero of f;
- (3) if $N(I,x) \subseteq I$, then I contains a unique zero of f.

Proof.

- (1) Follows from Mean Value Theorem;
- (2) Contra-positive of (1);
- (3) Existence from Brouwer's fixed point theorem; uniqueness from non-vanishing F^\prime .

Approximation Theory and Proof Assistants: Certified Computations

Nicolas Brisebarre and Damien Pous

Master 2 Informatique Fondamentale École Normale Supérieure de Lyon, 2023-2024

Chapter 5. Rigorous Polynomial Approximations

$$f(x) = e^{1/\cos(x)}, x \in [0, 1], p(x) = \sum_{i=0}^{10} c_i x^i,$$

.3-

$$f(x) = e^{1/\cos(x)}, \ x \in [0, 1], \ p(x) = \sum_{i=0}^{10} c_i x^i, \ \varepsilon(x) = f(x) - p(x)$$

.3-

$$\begin{array}{l} f(x)=e^{1/\cos(x)},\;x\in[0,1],\;\;p(x)=\sum_{i=0}^{10}c_ix^i,\;\;\varepsilon(x)=f(x)-p(x)\;\;\text{s.t.}\\ \|\varepsilon\|_{\infty}=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\}\;\text{is as small as possible (Remez algorithm)} \end{array}$$

$$f(x)=e^{1/\cos(x)},\;x\in[0,1],\;\;p(x)=\sum_{i=0}^{10}c_ix^i,\;arepsilon(x)=f(x)-p(x)$$
 s.t. $\|arepsilon\|_{\infty}=\sup_{x\in[a,\,b]}\{|arepsilon(x)|\}$ is as small as possible (Remez algorithm)

-4-

$$f(x)=e^{1/\cos(x)},\;x\in[0,1],\;\;p(x)=\sum_{i=0}^{10}c_ix^i,\;\varepsilon(x)=f(x)-p(x)$$
 s.t. $\|\varepsilon\|_\infty=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\}$ is as small as possible (Remez algorithm)

$$\begin{array}{l} f(x)=e^{1/\cos(x)}, \ x\in[0,1], \ p(x)=\sum_{i=0}^{10}c_ix^i, \ \varepsilon(x)=f(x)-p(x) \text{ s.t.} \\ \|\varepsilon\|_{\infty}=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\} \text{ is as small as possible (Remez algorithm)} \end{array}$$

Using IA, $\varepsilon(x) \in [-233,298]$, but $\|\varepsilon(x)\|_{\infty} \simeq 3.8325 \cdot 10^{-5}$

Why IA does not suffice: Overestimation

Overestimation can be reduced by using intervals of smaller width.

In this case, over [0,1] we need 10^7 intervals!

f replaced with

- polynomial approximation ${\it T}$ of degree $\it n$

f replaced with

- polynomial approximation ${\it T}$ of degree $\it n$
- interval Δ s. t. $f(x) T(x) \in \Delta, \forall x \in [a, b]$

-6-

```
f replaced with a rigorous polynomial approximation : (T, \Delta)
- polynomial approximation T of degree n
- interval \Delta s. t. f(x) - T(x) \in \Delta, \forall x \in [a, b]
0.003
0.002
0.001
-0.001
-0.002
-0.003
-0.004
              -0.5
How to compute (T, \Delta)?
```

Chebyshev Models

Over [-1,1], Chebyshev polynomials: $T_n(x) = \cos\left(n\arccos x\right), n\geqslant 0.$

Over [-1,1], Chebyshev polynomials: $T_n(x) = \cos(n \arccos x), n \ge 0.$

Let I = [a, b], we define Chebyshev polynomials over I as

$$T_n^{[a,b]}(x) = T_n\left(\frac{2x-b-a}{b-a}\right).$$

Over [-1,1], Chebyshev polynomials: $T_n(x) = \cos(n \arccos x), n \ge 0.$

Let $I=\left[a,b\right]$, we define Chebyshev polynomials over I as

$$T_n^{[a,b]}(x) = T_n\left(\frac{2x-b-a}{b-a}\right).$$

 $T_{n+1}^{[a,b]}$ has n+1 distinct real roots in [a,b] (Chebyshev nodes of the first kind):

$$\mu_k^{[a,b]} = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{(k+1/2)\pi}{n+1}\right), k = 0,\dots, n.$$

We recall

Lemma 1

The polynomial $W_{\overline{\mu}}(x) = \prod_{k=0}^{n} (x - \mu_k^{[a,b]})$, is the monic degree-(n+1) polynomial that minimizes the supremum norm over [a,b] of all monic polynomials in $\mathbb{C}[x]$ of degree at most n+1. We have

$$W_{\overline{\mu}}(x) = \frac{(b-a)^{n+1}}{2^{2n+1}} T_{n+1}^{[a,b]}(x)$$

and

$$\max_{x \in [a,b]} |W_{\overline{\mu}}(x)| = \frac{(b-a)^{n+1}}{2^{2n+1}(n+1)!}.$$

Lemma 2

(Taylor-Lagrange-like formula.) Let $n \in \mathbb{N}$, and let $f \in \mathcal{C}^{n+1}([a,b])$. Let $P \in \mathbb{R}_n[X]$ be the interpolation polynomial of f at the Chebyshev nodes $\left(\mu_k^{[a,b]}\right)_{0\leqslant k\leqslant n}$. For all $x\in [a,b]$, there exists $\xi_x\in (a,b)$ such that

$$f(x) = P(x) + \frac{(b-a)^{n+1} f^{(n+1)}(\xi_x)}{2^{2n+1} (n+1)!} T_{n+1}^{[a,b]}(x).$$

-9-

Chebyshev Models - How do we obtain them?

Let $n\in\mathbb{N}$, $f\in\mathcal{C}^{n+1}([a,b])$,

Chebyshev Models - How do we obtain them?

Let $n \in \mathbb{N}$, $f \in \mathcal{C}^{n+1}([a,b])$,

•
$$f(x) = \sum_{k=0}^{n} p_k T_k^{[a,b]}(x) + \underbrace{\Delta_n(x,\xi)}_{\text{remainder}}$$

• $\Delta_n(x,\xi)=\frac{(b-a)^{n+1}f^{(n+1)}(\xi_x)}{2^{2n+1}(n+1)!}T_{n+1}^{[a,b]}(x)$, $x\in[a,b]$, ξ lies strictly between a and b

Chebyshev Models - How do we obtain them?

Let $n\in\mathbb{N}$, $f\in\mathcal{C}^{n+1}([a,b])$,

•
$$f(x) = \sum_{k=0}^{n} p_k T_k^{[a,b]}(x) + \underbrace{\Delta_n(x,\xi)}_{\text{remainder}}$$

- $\Delta_n(x,\xi) = \frac{(b-a)^{n+1}f^{(n+1)}(\xi_x)}{2^{2n+1}(n+1)!}T_{n+1}^{[a,b]}(x), \ x \in [a,b], \ \xi \text{ lies strictly between } a \text{ and } b$
- How to compute the coefficients p_i of T(x) ?
- How to compute an interval enclosure Δ for $\Delta_n(x,\xi)$?

$$P(x) = \sum_{i=0}^{n} p_i T_i^{[a,b]}(x)$$
, with $p_i = \sum_{k=0}^{n} \frac{2}{n+1} f(\mu_k) T_i^{[a,b]}(\mu_k)$.

Reminder: Clenshaw's method for evaluating Chebyshev sums

Algorithm

Input Chebyshev coefficients c_0, \ldots, c_N , a point tOutput $\sum_{k=0}^{N} c_k T_k(t)$

- ② for $k = N 1, N 2, \dots, 1$
 - $b_k \leftarrow 2tb_{k+1} b_{k+2} + c_k$

This algorithm runs in O(N) arithmetic operations.

Reminder: Clenshaw's method for evaluating Chebyshev sums

Algorithm

Input Chebyshev coefficients c_0, \ldots, c_N , a point tOutput $\sum_{k=0}^{N} c_k T_k(t)$

- $b_{N+1} \leftarrow 0, \ b_N \leftarrow c_N$
- ② for $k = N 1, N 2, \dots, 1$

$$b_k \leftarrow 2tb_{k+1} - b_{k+2} + c_k$$

3 return $c_0 + tb_1 - b_2$

This algorithm runs in O(N) arithmetic operations.

It works also if t and the c_k 's are intervals!

$$P(x) = \sum_{i=0}^{n} p_i T_i^{[a,b]}(x)$$
, with $p_i = \sum_{k=0}^{n} \frac{2}{n+1} f(\mu_k) T_i^{[a,b]}(\mu_k)$.

$$P(x) = \sum_{i=0}^{n} p_i T_i^{[a,b]}(x)$$
, with $p_i = \sum_{k=0}^{n} \frac{2}{n+1} f(\mu_k) T_i^{[a,b]}(\mu_k)$.

We replace the μ_k 's and the $f(\mu_k)$'s with interval enclosures, and then perform an interval evaluation with Clenshaw's method

$$P(x) = \sum_{i=0}^{n} p_i T_i^{[a,b]}(x)$$
, with $p_i = \sum_{k=0}^{n} \frac{2}{n+1} f(\mu_k) T_i^{[a,b]}(\mu_k)$.

We replace the μ_k 's and the $f(\mu_k)$'s with interval enclosures, and then perform an interval evaluation with Clenshaw's method: the coefficients p_i are intervals.

$$\Delta_{n}(x,\xi) = \tfrac{(b-a)^{n+1}f^{(n+1)}(\xi_{x})}{2^{2n+1}(n+1)!}T_{n+1}^{[a,b]}\left(x\right), \ x \in [a,b], \ \xi \ \text{lies strictly between } a \ \text{and} \ b.$$

$$\Delta_n(x,\xi)=\frac{(b-a)^{n+1}f^{(n+1)}(\xi_x)}{2^{2n+1}(n+1)!}T_{n+1}^{[a,b]}\left(x\right)$$
 , $x\in[a,b]$, ξ lies strictly between a and b .

$$|\Delta_n(x,\xi)|$$
 is bounded by $\frac{(b-a)^{n+1}|f^{(n+1)}([a,b])|}{2^{2n+1}(n+1)!}$.

$$\Delta_n(x,\xi) = \tfrac{(b-a)^{n+1} f^{(n+1)}(\xi_x)}{2^{2n+1} (n+1)!} T_{n+1}^{[a,b]} \left(x \right) , \; x \in [a,b], \; \xi \; \text{lies strictly between} \; a \; \text{and} \; b.$$

$$|\Delta_n(x,\xi)|$$
 is bounded by $\frac{(b-a)^{n+1}|f^{(n+1)}([a,b])|}{2^{2n+1}(n+1)!}$.

If f satisfies a differential equation with polynomial coefficients: fairly easy to retrieve an upper bound for $\left|f^{(n+1)}([a,b])\right|$.

$$\Delta_n(x,\xi) = \tfrac{(b-a)^{n+1} f^{(n+1)}(\xi_x)}{2^{2n+1} (n+1)!} T_{n+1}^{[a,b]} \left(x \right) , \; x \in [a,b], \; \xi \; \text{lies strictly between} \; a \; \text{and} \; b.$$

$$|\Delta_n(x,\xi)|$$
 is bounded by $\frac{(b-a)^{n+1} \left| f^{(n+1)}([a,b]) \right|}{2^{2n+1}(n+1)!}$.

If f satisfies a differential equation with polynomial coefficients: fairly easy to retrieve an upper bound for $\left|f^{(n+1)}([a,b])\right|$.

Otherwise?

Chebyshev Models "Philosophy"

For bounding the remainders:

- For "basic functions" use Taylor-Lagrange-like statement.
- For "composite functions" use a two-step procedure:
 - compute models (T, Δ) for all basic functions;
 - apply algebraic rules with these models, instead of operations with the corresponding functions.

Example: $f_{\text{comp}}(x) = \exp(\sin(x) + \cos(x))$

Example: $f_{\text{comp}}(x) = \exp(\sin(x) + \cos(x))$

-16-

Example: $f_{\text{comp}}(x) = \exp(\sin(x) + \cos(x))$

-16-

Chebyshev Models - Operations: Addition

Given two Chebyshev Models for
$$f_1$$
 and f_2 , over $[a,b]$, degree n : $f_1(x)-P_1(x)\in \mathbf{\Delta}_1$ and $f_2(x)-P_2(x)\in \mathbf{\Delta}_2$, $\forall x\in [a,b]$.

Addition

$$(P_1, \Delta_1) + (P_2, \Delta_2) = (P_1 + P_2, \Delta_1 + \Delta_2).$$

For multiplication, we have:
$$T_m^{[a,b]}(x) \cdot T_n^{[a,b]}(x) = \frac{T_{m+n}^{[a,b]} + T_{|m-n|}^{[a,b]}}{2}.$$

For multiplication, we have: $T_m^{[a,b]}(x) \cdot T_n^{[a,b]}(x) = \frac{T_{m+n}^{[a,b]} + T_{|m-n|}^{[a,b]}}{2}$.

Consider
$$P(x) = \sum_{i=0}^{n} p_i T_i^{[a,b]}(x)$$
 and $Q(x) = \sum_{i=0}^{n} q_i T_i^{[a,b]}(x)$.

We have
$$P(x) \cdot Q(x) = \sum_{k=0}^{2n} c_k T_k^{[a,b]}(x)$$
, where

$$c_k = \left(\sum_{|i-j|=k} p_i q_j + \sum_{i+j=k} p_i q_j\right)/2.$$

The cost is $O(n^2)$ operations.

Given two Chebyshev Models for f_1 and f_2 , over [a,b], degree n: $f_1(x)-P_1(x)\in \Delta_1$ and $f_2(x)-P_2(x)\in \Delta_2$, $\forall x\in [a,b]$.

Multiplication

We need algebraic rule for: $(P_1, \Delta_1) \cdot (P_2, \Delta_2) = (P, \Delta)$ s.t. $f_1(x) \cdot f_2(x) - P(x) \in \Delta$, $\forall x \in [a,b]$

Given two Chebyshev Models for f_1 and f_2 , over [a,b], degree n: $f_1(x)-P_1(x)\in \mathbf{\Delta}_1$ and $f_2(x)-P_2(x)\in \mathbf{\Delta}_2$, $\forall x\in [a,b]$.

Multiplication

We need algebraic rule for:
$$(P_1, \Delta_1) \cdot (P_2, \Delta_2) = (P, \Delta)$$
 s.t. $f_1(x) \cdot f_2(x) - P(x) \in \Delta$, $\forall x \in [a, b]$

$$\underbrace{(P_1(x) \cdot P_2(x))_{0...n} + \underbrace{(P_1(x) \cdot P_2(x))_{n+1...2n}}_{P(x)} + \underbrace{(P_1(x) \cdot P_2(x))_{n+1...2n}}_{I_1}}_{I_2}.$$

$$\Delta = I_1 + I_2$$

Given two Chebyshev Models for f_1 and f_2 , over [a,b], degree n: $f_1(x) - P_1(x) \in \Delta_1$ and $f_2(x) - P_2(x) \in \Delta_2$, $\forall x \in [a,b]$.

Multiplication

We need algebraic rule for: $(P_1, \Delta_1) \cdot (P_2, \Delta_2) = (P, \Delta)$ s.t. $f_1(x) \cdot f_2(x) - P(x) \in \Delta$, $\forall x \in [a, b]$

$$f_1(x) \cdot f_2(x) \in \underbrace{P_1(x) \cdot P_2(x)}_{P_2(x)} + \underbrace{P_2 \cdot \Delta_1 + P_1 \cdot \Delta_2 + \Delta_1 \cdot \Delta_2}_{I_2}.$$

$$\underbrace{(P_1(x) \cdot P_2(x))_{0...n}}_{P(x)} + \underbrace{(P_1(x) \cdot P_2(x))_{n+1...2n}}_{I_1}$$

$$\Delta = I_1 + I_2$$

In our case, for bounding "Ps": Interval Arithmetic evaluation.

Given CMs for f_1 over [c,d], for f_2 over [a,b], degree n: $f_1(y)-P_1(y)\in \mathbf{\Delta}_1$, $\forall y\in [c,d]$ and $f_2(x)-P_2(x)\in \mathbf{\Delta}_2$, $\forall x\in [a,b]$.

```
Given CMs for f_1 over [c,d], for f_2 over [a,b], degree n: f_1(y)-P_1(y)\in \mathbf{\Delta}_1, \forall y\in [c,d] and f_2(x)-P_2(x)\in \mathbf{\Delta}_2, \forall x\in [a,b].
```

Remark: $(f_1 \circ f_2)(x)$ is f_1 evaluated at $y = f_2(x)$. We need: $f_2([a,b]) \subseteq [c,d]$, checked by $\mathbf{P_2} + \mathbf{\Delta}_2 \subseteq [c,d]$

```
Given CMs for f_1 over [c,d], for f_2 over [a,b], degree n: f_1(y)-P_1(y)\in \Delta_1, \forall y\in [c,d] and f_2(x)-P_2(x)\in \Delta_2, \forall x\in [a,b].
```

Remark: $(f_1 \circ f_2)(x)$ is f_1 evaluated at $y = f_2(x)$.

We need: $f_2([a,b]) \subseteq [c,d]$, checked by $P_2 + \Delta_2 \subseteq [c,d]$

$$f_1(\mathbf{y}) \in P_1(\mathbf{y}) + \mathbf{\Delta}_1$$

-20-

```
Given CMs for f_1 over [c,d], for f_2 over [a,b], degree n: f_1(y)-P_1(y)\in \pmb{\Delta}_1,\ \forall y\in [c,d]\ \text{and}\ f_2(x)-P_2(x)\in \pmb{\Delta}_2,\ \forall x\in [a,b]. Remark: (f_1\circ f_2)(x) is f_1 evaluated at y=f_2(x). We need: f_2([a,b])\subseteq [c,d], checked by \pmb{P_2}+\pmb{\Delta}_2\subseteq [c,d] f_1(f_2(x))\in P_1(f_2(x))+\pmb{\Delta}_1
```

Given CMs for
$$f_1$$
 over $[c,d]$, for f_2 over $[a,b]$, degree n : $f_1(y)-P_1(y)\in \Delta_1$, $\forall y\in [c,d]$ and $f_2(x)-P_2(x)\in \Delta_2$, $\forall x\in [a,b]$.

Remark: $(f_1 \circ f_2)(x)$ is f_1 evaluated at $y = f_2(x)$. We need: $f_2([a,b]) \subseteq [c,d]$, checked by $\mathbf{P_2} + \mathbf{\Delta}_2 \subseteq [c,d]$

$$f_1(f_2(x)) \in P_1(P_2(x) + \Delta_2) + \Delta_1$$

Extract polynomial and remainder: P_1 can be evaluated using only additions and multiplications: Clenshaw's algorithm

Ranges of polynomials

Observe that we heavily used enclosures of ranges of polynomials. This raises (at least) two questions:

Ranges of polynomials

Observe that we heavily used enclosures of ranges of polynomials. This raises (at least) two questions:

- How do we compute these enclosures?
- why would this process yield tight enclosures?

• A first option: let $p(x) = a_0 + a_1 T_1^{[a,b]}(x) + \dots + a_n T_n^{[a,b]}(x)$, as, p(I) is bounded by $p(x) = |a_0| + |a_1| + \dots + |a_n|$.

- A first option: let $p(x) = a_0 + a_1 T_1^{[a,b]}(x) + \dots + a_n T_n^{[a,b]}(x)$, as, p(I) is bounded by $p(x) = |a_0| + |a_1| + \dots + |a_n|$.
- Another possibility is to use Bernstein's basis: indeed, one can show that if

$$p(x) = \sum_{k=0}^{n} p_k B_{n,k}(x),$$

then for all $x \in [0,1]$, we have

$$\min_{[0,1]} p \geqslant \min_k p_k \qquad \text{and} \qquad \max_{[0,1]} p \leqslant \max_k p_k.$$

- A first option: let $p(x)=a_0+a_1T_1^{[a,b]}(x)+\cdots+a_nT_n^{[a,b]}(x)$, as, p(I) is bounded by $p(x)=|a_0|+|a_1|+\cdots+|a_n|$.
- Another possibility is to use Bernstein's basis: indeed, one can show that if

$$p(x) = \sum_{k=0}^{n} p_k B_{n,k}(x),$$

then for all $x \in [0,1]$, we have

$$\min_{[0,1]} p \geqslant \min_k p_k \qquad \text{and} \qquad \max_{[0,1]} p \leqslant \max_k p_k.$$

Warning: need for a conversion algorithm (cost in O(M(n))). Problems of stability.

- A first option: let $p(x)=a_0+a_1T_1^{[a,b]}(x)+\cdots+a_nT_n^{[a,b]}(x)$, as, p(I) is bounded by $p(x)=|a_0|+|a_1|+\cdots+|a_n|$.
- Another possibility is to use Bernstein's basis: indeed, one can show that if

$$p(x) = \sum_{k=0}^{n} p_k B_{n,k}(x),$$

then for all $x \in [0,1]$, we have

$$\min_{[0,1]} p \geqslant \min_k p_k \qquad \text{and} \qquad \max_{[0,1]} p \leqslant \max_k p_k.$$

Warning: need for a conversion algorithm (cost in O(M(n))). Problems of stability.

 Tighter methods based on Descartes' rule of signs, Sturm's theorem, sums of squares (Hilbert's 17th problem), companion matrices, etc.

Ranges of polynomials

Second, why would this process yield tight enclosures? Our basic functions are analytic, and hence the coefficients of Chebyshev interpolants (quickly) converge to 0.

$$P(x) = \sum_{k=0}^{n} a_k T_k(x)$$
, where $a_k = \frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_k(x)}{\sqrt{1-x^2}} dx$.

 $^{^{}m 1}$ solutions of Linear Differential Equations with polynomial coefficients

$$P(x) = \sum_{k=0}^{n} a_k T_k(x)$$
, where $a_k = \frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_k(x)}{\sqrt{1 - x^2}} dx$.

Computation of the coefficients (for "basic" D-finite functions¹)

- recurrence formulae² for computing a_k

¹ solutions of Linear Differential Equations with polynomial coefficients

²A. Benoit and B. Salvy, Chebyshev Expansions for Solutions of Linear Differential Equations, ISSAC '09: Proceedings of the twenty-second international symposium on Symbolic and algebraic computation, 23-30, ISSAC '09. ACM, New York, NY, 23-30

$$P(x) = \sum_{k=0}^{n} a_k T_k(x)$$
, where $a_k = \frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_k(x)}{\sqrt{1 - x^2}} dx$.

Computation of the coefficients (for "basic" D-finite functions¹)

- recurrence formulae² for computing a_k

¹ solutions of Linear Differential Equations with polynomial coefficients

²A. Benoit and B. Salvy, Chebyshev Expansions for Solutions of Linear Differential Equations, ISSAC '09: Proceedings of the twenty-second international symposium on Symbolic and algebraic computation, 23-30, ISSAC '09. ACM, New York, NY, 23-30

$$P(x) = \sum_{k=0}^{n} a_k T_k(x)$$
, where $a_k = \frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_k(x)}{\sqrt{1 - x^2}} dx$.

Computation of the coefficients (for "basic" D-finite functions¹)

Truncation Error: Bernstein-like formula (for "basic" D-finite functions)

$$\forall x \in [-1, 1], \ \exists \xi \in [-1, 1] \ \text{s.t.} \ f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{2^n (n+1)!}.$$

 $^{^{}m 1}$ solutions of Linear Differential Equations with polynomial coefficients

$$P(x) = \sum_{k=0}^{n} a_k T_k(x)$$
, where $a_k = \frac{2}{\pi} \int_{-1}^{1} \frac{f(x) T_k(x)}{\sqrt{1-x^2}} dx$.

Computation of the coefficients (for "basic" D-finite functions¹)

Truncation Error: Bernstein-like formula (for "basic" D-finite functions)

- For composite functions, use algebraic rules (addition, multiplication, composition) with models

¹ solutions of Linear Differential Equations with polynomial coefficients