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Certified approximations

▶ Course organisation:
▶ the maths: Nicolas Brisebarre, generally on Thursdays
▶ their formalisation in Coq: Damien Pous, generally on Fridays
▶ + two courses by guest stars: Mioara Joldes (Toulouse) and

Florent Bréhard (Lille)

▶ Evaluation:
▶ exercises from one week to the other, both in Coq and on

paper
▶ progressively, Coq exercises become a project
▶ table exam during the last week (on paper)

▶ Website, references:
https://m2coqapprox.gitlabpages.inria.fr/

https://m2coqapprox.gitlabpages.inria.fr/


Today

▶ Overview of the Coq proof assistant (me)

▶ Hands on (you&me)



Coq is a proof assistant

It can be used in order to

▶ prove/certify mathematical theorems

▶ certify existing programs/libraries

▶ design certified software



Coq is not:

▶ a fast/distributed/bitcoin-oriented programming language

▶ a Turing-complete programming language

▶ a model-checker

▶ an automatic prover

▶ an oracle

▶ something easy to work with



Principles: Poincaré

▶ mathematical proofs can be arbitrarily complex
(and thus difficult to find)

▶ proofreading is easy. . .
(and thus boring)

. . . once we agree about what a proof is
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Principles - Curry-Howard correspondance

“proofs are programs”

p :

(A → B) ∧ (B → C ) ∧ A → C

(f , g , x) 7→

g(f (x))

property P type T (interface)
proof p term t (implementation)

proof-checking type-checking
p ⊢ P ⊢ t : T
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Quick tour of syntax and basic principles

Three kinds of use
Prove/certify mathematical theorems
Certify existing software
Build certified software

Summary



Syntax

Let’s play



What did we learn?

▶ There is a single language (gallina), for:
▶ programs/functions,
▶ specifications,
▶ proofs.

This is a purely functional programming language.

▶ There is another language (tactics: Ltac):
▶ for building/searching proofs,
▶ that can be used interactively.

There are primitive tactics (intros, apply, induction),
and rather complex ones (tauto, ring).
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Principles - Gallina

▶ Checking a proof is easy: this is just type-checking. . .
. . . but we need to trust the type-checker.

▶ Gallina is a small language,
▶ for which type-checking is (easily) decidable;
▶ and still remains really expressive.

▶ It relies on a strong theoretical background:
▶ the “Calculus of Inductive Constructions”,
▶ which comes from the λ-calculus.



Principles - Ltac

▶ Sequences of tactics do not constitute proofs:
tactics produce gallina terms that can be checked by Coq.

▶ We don’t need to trust tactics: any way to obtain a proof is
valid since the proof will be checked.

▶ Proofs can actually be searched by other means than Ltac.
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Prove/certify mathematical theorems

▶ We just proved some elementary theorems,
more complex ones can be proved too!

▶ Three major examples:
▶ Four-colours theorem;
▶ Feit-Thompson’s theorem (finite groups classification)
▶ Kepler’s conjecture



Certify existing software

▶ Given an existing program, we might want to prove:
▶ the absence of runtime errors,
▶ termination,
▶ behavioural correctness.

▶ Problem: sometimes, programs are not written in Coq. . .

▶ A solution: Why3 and Krakatoa/Caduceus tools.

(see Jean-Christophe Filliâtre’ gallery of certified programs:
http://why.lri.fr/examples/)

http://why.lri.fr/examples/
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Build certified software

▶ If we have to write a new program, why not writing it and
certifying it within Coq?

▶ Not so realistic, Coq is definitely too slow:
▶ it’s interpreted;
▶ integers, floats. . . are not ‘native’.

▶ However, Coq programs can be extracted to other languages:
OCaml, Haskell and Scheme.

▶ This is how Xavier Leroy and Sandrine Blazy obtained their
certified compiler for C:
http://compcert.inria.fr/

http://compcert.inria.fr/
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Summary

▶ Coq is a programming language:
▶ purely functional;
▶ interpreted (rather slow), but programs can be extracted to

fast, compiled, languages;

▶ Coq is an expressive specification language:
▶ any mathematical property can be stated.

▶ Coq certifies proofs by a simple type-checking algorithm.
▶ Coq is a proof assistant:

▶ the interactive mode allows us to prove a theorem
progressively, by using tactics;

▶ tactics can be more or less elaborated, and can be defined by
the user.



History / people

▶ 1984: Thierry Coquand and Gérard Huet implement the
Calculus of Constructions

▶ 1991: Christine Paulin adds Inductives

▶ 2005: Georges Gonthier: 4-colours theorem

▶ 2008: Xavier Leroy & Sandrine Blazy: compcert

▶ 2012: Georges Gonthier, Assia Mahboubi, & many others:
Feit-Thompson theorem

▶ 2013: Vladimir Voevodski: univalence axiom, HoTT book



Related software

▶ Isabelle/HOL
Larry Paulson - Cambridge & Tobias Nipkow - München

▶ Agda
Catarina Coquand - Chalmers

▶ Lean
Leo de Moura - Microsoft, AWS



Hands-on

https://m2coqapprox.gitlabpages.inria.fr/

https://m2coqapprox.gitlabpages.inria.fr/
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